Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gravitational Form Factors and Mechanical Properties of Quarks in Protons: A Basis Light-Front Quantization Approach (2403.11702v1)

Published 18 Mar 2024 in hep-ph

Abstract: We compute the gravitational form factors (GFFs) and study their applications for the description of the mechanical properties such as the pressure, shear force distributions, and the mechanical radius of the proton from its light-front wave functions (LFWFs) based on basis light-front quantization (BLFQ). The LFWFs of the proton are given by the lowest eigenvector of a light-front effective Hamiltonian that incorporates a three-dimensional confining potential and a one-gluon exchange interaction with fixed coupling between the constituent quarks solved in the valence Fock sector. We find acceptable agreement between our BLFQ computations and the lattice QCD for the GFFs. Our $D$-term form factor also agrees well with the extracted data from the deeply virtual Compton scattering experiments at Jefferson Lab, and the results of different phenomenological models. The distributions of pressures and shear forces are similar to those from different models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (108)
  1. arXiv:0705.2409, doi:10.1103/PhysRevLett.99.112001.
  2. arXiv:0710.0835, doi:10.1103/PhysRevLett.100.032004.
  3. arXiv:1805.06596, doi:10.1142/S0217751X18300259.
  4. arXiv:1810.09837, doi:10.1140/epjc/s10052-019-6572-3.
  5. doi:10.1038/s41586-018-0060-z.
  6. arXiv:1810.07589, doi:10.1103/PhysRevLett.122.072003.
  7. arXiv:hep-ex/0107043, doi:10.1103/PhysRevLett.87.182002.
  8. arXiv:0711.4805, doi:10.1103/PhysRevLett.100.162002.
  9. arXiv:2007.15677, doi:10.1103/PhysRevLett.125.182001.
  10. doi:10.1140/epjad/s2004-03-008-x.
  11. arXiv:hep-ex/9902019, doi:10.1007/s100520050703.
  12. arXiv:hep-ex/0107005, doi:10.1016/S0370-2693(01)00939-X.
  13. arXiv:hep-ex/0305028, doi:10.1016/j.physletb.2003.08.048.
  14. arXiv:hep-ex/0106068, doi:10.1103/PhysRevLett.87.182001.
  15. arXiv:1511.04535, doi:10.1140/epja/i2016-16158-2.
  16. doi:10.1140/epja/i2016-16151-9.
  17. arXiv:1602.02763, doi:10.1140/epja/i2016-16157-3.
  18. arXiv:2103.05419, doi:10.1016/j.nuclphysa.2022.122447.
  19. arXiv:2102.09222, doi:10.1007/s11467-021-1062-0.
  20. arXiv:hep-ph/9603249, doi:10.1103/PhysRevLett.78.610.
  21. arXiv:1808.00155, doi:10.1007/JHEP09(2018)156.
  22. arXiv:hep-ph/0111048, doi:10.1103/PhysRevLett.88.052003.
  23. arXiv:hep-ph/0203276, doi:10.1016/S0370-2693(02)02025-7.
  24. arXiv:nucl-th/0703073, doi:10.1016/j.nuclphysa.2007.10.012.
  25. arXiv:hep-ph/0207230, doi:10.1103/PhysRevD.66.114004.
  26. arXiv:hep-ph/0605279, doi:10.1103/PhysRevD.74.054006.
  27. arXiv:hep-ph/0702031, doi:10.1103/PhysRevC.75.055207.
  28. arXiv:hep-ph/0702030, doi:10.1103/PhysRevD.75.094021.
  29. arXiv:hep-ph/0701057, doi:10.1016/j.physletb.2007.03.013.
  30. arXiv:1911.08906, doi:10.1103/PhysRevD.101.034013.
  31. arXiv:hep-ph/0703025, doi:10.1016/j.nuclphysa.2007.08.004.
  32. arXiv:1205.5228, doi:10.1016/j.physletb.2012.10.055.
  33. arXiv:1902.00094, doi:10.1103/PhysRevD.99.094026.
  34. arXiv:1505.02013, doi:10.1103/PhysRevD.91.114026.
  35. arXiv:2010.04215, doi:10.1103/PhysRevD.102.113011.
  36. arXiv:2108.03905, doi:10.21468/SciPostPhysProc.8.113.
  37. doi:10.1007/s00601-016-1074-4.
  38. arXiv:1712.02110, doi:10.1140/epja/i2017-12433-0.
  39. arXiv:1407.5960, doi:10.1016/j.physletb.2014.10.047.
  40. arXiv:0903.4818, doi:10.1103/PhysRevD.79.115003.
  41. arXiv:1511.01736, doi:10.1140/epjc/s10052-016-3922-2.
  42. arXiv:2204.08857, doi:10.1103/PhysRevD.106.086004.
  43. arXiv:2103.03186, doi:10.1103/PhysRevD.103.094010.
  44. arXiv:hep-lat/0304018, doi:10.1103/PhysRevD.68.034505.
  45. arXiv:hep-ph/0304249, doi:10.1103/PhysRevLett.92.042002.
  46. arXiv:1001.3620, doi:10.1103/PhysRevD.82.094502.
  47. arXiv:0705.4295, doi:10.1103/PhysRevD.77.094502.
  48. arXiv:0710.1534, doi:10.22323/1.042.0158.
  49. arXiv:1312.4816, doi:10.1103/PhysRevD.91.014505.
  50. arXiv:2308.06812, doi:10.1103/PhysRevD.108.056026.
  51. arXiv:1810.05116, doi:10.1007/JHEP12(2018)008.
  52. arXiv:1811.07879, doi:10.1007/JHEP01(2019)120.
  53. arXiv:2107.01231, doi:10.1103/PhysRevD.104.114005.
  54. arXiv:2302.11906.
  55. arXiv:2003.08486, doi:10.1103/PhysRevD.101.094513.
  56. arXiv:1810.04626, doi:10.1103/PhysRevD.99.014511.
  57. arXiv:1805.00531, doi:10.1103/PhysRevD.98.074506.
  58. arXiv:1808.08677, doi:10.1103/PhysRevLett.121.212001.
  59. arXiv:1706.02973, doi:10.1103/PhysRevLett.119.142002.
  60. arXiv:2107.10368, doi:10.1103/PhysRevD.105.054509.
  61. arXiv:1910.04707, doi:10.1103/PhysRevD.101.086003.
  62. arXiv:1808.02163, doi:10.1103/PhysRevD.98.074003.
  63. arXiv:2004.12715, doi:10.1103/PhysRevD.101.114004.
  64. arXiv:1905.10811, doi:10.1103/PhysRevLett.123.072001.
  65. arXiv:0903.3905.
  66. arXiv:2202.08970, doi:10.1140/epja/s10050-022-00750-6.
  67. arXiv:2205.03012, doi:10.3390/physics4020037.
  68. arXiv:0905.1411, doi:10.1103/PhysRevC.81.035205.
  69. arXiv:1402.4195, doi:10.1016/j.physletb.2014.08.020.
  70. arXiv:2201.12770, doi:10.1016/j.physletb.2022.137005.
  71. arXiv:1404.6234, doi:10.1103/PhysRevD.91.105009.
  72. arXiv:1509.07212, doi:10.1016/j.physletb.2016.04.065.
  73. arXiv:1811.08512, doi:10.1103/PhysRevC.99.035206.
  74. arXiv:1901.11430, doi:10.1103/PhysRevLett.122.172001.
  75. arXiv:1907.01509, doi:10.1103/PhysRevD.101.034024.
  76. arXiv:1810.05971, doi:10.1103/PhysRevD.98.114038.
  77. arXiv:1912.02088, doi:10.1140/epjc/s10052-020-8081-9.
  78. arXiv:1911.10913, doi:10.1103/PhysRevD.102.016008.
  79. arXiv:2108.03909, doi:10.1103/PhysRevD.104.094036.
  80. arXiv:1911.11676, doi:10.1103/PhysRevD.102.014020.
  81. arXiv:2005.13806, doi:10.1103/PhysRevC.102.055207.
  82. arXiv:2106.04954, doi:10.1016/j.physletb.2022.136890.
  83. arXiv:2301.12994, doi:10.1016/j.physletb.2023.137808.
  84. arXiv:2209.08584.
  85. arXiv:2208.00355, doi:10.1103/PhysRevD.106.114040.
  86. arXiv:2201.06428, doi:10.1103/PhysRevD.105.094028.
  87. arXiv:1407.8131, doi:10.1016/j.physrep.2015.05.001.
  88. arXiv:2205.04714, doi:10.1016/j.physletb.2022.137360.
  89. arXiv:2202.00985, doi:10.1103/PhysRevD.105.094018.
  90. arXiv:2109.12921, doi:10.21468/SciPostPhysProc.10.036.
  91. arXiv:hep-ph/9711298, doi:10.1016/S0370-2693(97)01410-X.
  92. arXiv:1209.3246, doi:10.1016/j.physletb.2012.09.027.
  93. arXiv:1308.1519, doi:10.1016/j.physletb.2013.11.042.
  94. arXiv:2312.02543.
  95. arXiv:0804.0452, doi:10.1103/PhysRevD.78.025032.
  96. doi:10.1103/PhysRevD.73.036007. URL https://link.aps.org/doi/10.1103/PhysRevD.73.036007
  97. doi:10.1103/PhysRevD.44.3857. URL https://link.aps.org/doi/10.1103/PhysRevD.44.3857
  98. doi:10.1103/PhysRevD.50.971. URL https://link.aps.org/doi/10.1103/PhysRevD.50.971
  99. doi:10.1103/PhysRevD.58.096015. URL https://link.aps.org/doi/10.1103/PhysRevD.58.096015
  100. arXiv:2310.08484.
  101. doi:10.1016/0550-3213(77)90384-4.
  102. arXiv:0804.3755, doi:10.1016/j.cpc.2008.08.010.
  103. arXiv:hep-th/0003082, doi:10.1016/S0550-3213(00)00626-X.
  104. arXiv:1908.06143, doi:10.1140/epjc/s10052-020-7676-5.
  105. arXiv:1402.0161, doi:10.1103/PhysRevD.89.114021.
  106. arXiv:1712.04198, doi:10.5506/APhysPolB.49.741.
  107. arXiv:hep-ph/0210165, doi:10.1016/S0370-2693(03)00036-4.
  108. arXiv:2102.01683, doi:10.1103/PhysRevD.103.094023.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com