Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite element method coupled with multiscale finite element method for the non-stationary Stokes-Darcy model (2403.11600v1)

Published 18 Mar 2024 in math.NA and cs.NA

Abstract: In this paper, we combine the multiscale flnite element method to propose an algorithm for solving the non-stationary Stokes-Darcy model, where the permeability coefflcient in the Darcy region exhibits multiscale characteristics. Our algorithm involves two steps: first, conducting the parallel computation of multiscale basis functions in the Darcy region. Second, based on these multiscale basis functions, we employ an implicitexplicit scheme to solve the Stokes-Darcy equations. One signiflcant feature of the algorithm is that it solves problems on relatively coarse grids, thus signiflcantly reducing computational costs. Moreover, under the same coarse grid size, it exhibits higher accuracy compared to standard flnite element method. Under the assumption that the permeability coefflcient is periodic and independent of time, this paper demonstrates the stability and convergence of the algorithm. Finally, the rationality and effectiveness of the algorithm are verifled through three numerical experiments, with experimental results consistent with theoretical analysis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Beavers, G. S.,Joseph, D. D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech., 30(1), 197-207 (1967).
  2. Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal., 49(3), 1064-1084 (2011).
  3. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math., 43, 57-74 (2002).
  4. D’Angelo, C., Zunino, P.: A finite element method based on weighted interior penalties for heterogeneous incompressible flows. SIAM J. Numer. Anal., 47(5), 3990-4020 (2009).
  5. Efendiev, Y., Hou, T. Y.: Multiscale finite element methods: theory and applications. Surveys and Tutorials in the Applied Mathematical Sciences, Springer(2009).
  6. Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys., 2(3), 367-450 (2007).
  7. Fu, S., Eric, C., Zhao, L.: Generalized multiscale finite element method for highly heterogeneous compressible flow. Multiscale. Model. Sim, 20(4), 1437-1467 (2022).
  8. Franca, L. P., Madureira, A. L., Valentin, F.: Towards multiscale functions: enriching finite element spaces with local but not bubble-like functions. Comput. Method. Appl. Mech., 194(27-29), 3006-3021 (2005).
  9. Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite element methods for Stokes–Darcy flows. Numer. Math., 127(1), 93-165 (2014).
  10. Hecht, F.: New developments in FreeFem++. J. Numer. Math., 20, 251-266 (2012).
  11. He, X., Jiang, L.: An upscaling method using coefficient splitting and its applications to elliptic PDEs. Comput. Math. Appl., 65(4), 712-730 (2013).
  12. Hou, Y., Qin, Y.: On the solution of coupled Stokes/Darcy model with Beavers–Joseph interface condition. Comput. Math. Appl., 77(1), 50-65 (2019).
  13. Hou, T. Y., Wu, X. H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys., 134(1), 169-189 (1997).
  14. Hou, T. Y., Wu, X. H., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput., 68(227), 913-943 (1999).
  15. Hong, Y., Zhang, W., Zhao, L., Zheng, H.: Multiscale finite element method for Stokes-Darcy model. arXiv:2401.03672v1 [math.NA], 8 Jan 2024.
  16. Li, R., Li, J., Chen, Z., Gao, Y.: A stabilized finite element method based on two local Gauss integrations for a coupled Stokes–Darcy problem. J. Comput. Appl. Math., 292, 92-104 (2016).
  17. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal., 40(6), 2195–2218 (2002).
  18. Mikelic, A., Jäger, W.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math., 60(4), 1111-1127 (2000).
  19. Ming, P., Yue, X.: Numerical methods for multiscale elliptic problems. J. Comput. Phys., 214(1), 421-445 (2006).
  20. Ming, P., Zhang, P.: Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math. Comput., 76(257), 153-177 (2007).
  21. Ming, P., Song, S.: Error Estimate of Multiscale Finite Element Method for Periodic Media Revisited. Multiscale Model. Simul., 22(1), 106-124 (2024).
  22. Ming, P., Zhang, P.: Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc., 18(1), 121-156 (2005).
  23. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comput., 79(270), 707–731 (2010).
  24. Saffman, P. G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math., 50(2), 93-101 (1971).
  25. Su, F., Xu, Z., Dong, Q. L., Jiang, H.: Multiscale computation method for parabolic problems of composite materials. Appl. Math. Comput., 217(21), 8337-8342 (2011).
  26. Shan, L., Zhang, Y.: Error estimates of the partitioned time stepping method for the evolutionary Stokes–Darcy flows. Comput. Math. Appl., 73(4), 713-726 (2017).
  27. Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal., 51(2), 813-839 (2013).
  28. Shan, L., Zheng, H., Layton, W. J.: A decoupling method with different subdomain time steps for the nonstationary Stokes–Darcy model. Numer. Meth. Part Differ. Equ., 29(2), 549-583 (2013).
  29. Wang, Y., Eric, C., Zhao, L.: Constraint energy minimization generalized multiscale finite element method in mixed formulation for parabolic equations. Math. Comput. Simul., 188, 455-475 (2021).
  30. E, W., Ming, P.: Analysis of multiscale methods. J. Comput. Math., 22(2), 210 (2004).
  31. Xue, D., Hou, Y.: A second-order decoupled algorithm with different subdomain time steps for the non-stationary Stokes/Darcy model. Numerical Algorithms, 88(3), 1137-1182 (2021).
  32. Ye, C., Dong, H., Cui, J.: Convergence rate of multiscale finite element method for various boundary problems. J. Comput. Appl. Math., 374, 112754 (2020).
  33. Zheng, H., Hou, Y., Shi, F., Song, L.: A finite element variational multiscale method for incompressible flows based on two local Gauss integrations. J. Comput. Phys., 228(16), 5961-5977 (2009).
  34. Accurate multiscale finite element method for numerical simulation of two-phase flow in fractured media using discrete-fracture model. J. Comput. Phys., 242, 420-438 (2013).

Summary

We haven't generated a summary for this paper yet.