A supersymmetric quantum perspective on the explicit large deviations for reversible Markov jump processes, with applications to pure and random spin chains (2403.11525v2)
Abstract: The large deviations at various levels that are explicit for Markov jump processes satisfying detailed-balance are revisited in terms of the supersymmetric quantum Hamiltonian $H$ that can be obtained from the Markov generator via a similarity transformation. We first focus on the large deviations at level 2 for the empirical density ${\hat p}(C) $ of the configurations $C$ seen during a trajectory over the large time-window $[0,T]$ and rewrite the explicit Donsker-Varadhan rate function as the matrix element $I{[2]}[{\hat p}(.) ] = \langle \sqrt{ {\hat p} } \vert H \vert \sqrt{{\hat p}} \rangle $ involving the square-root ket $\vert \sqrt{{\hat p}} \rangle $. [The analog formula is also discussed for reversible diffusion processes as a comparison.] We then consider the explicit rate functions at higher levels, in particular for the joint probability of the empirical density ${\hat p}(C) $ and the empirical local activities ${\hat a}(C,C') $ characterizing the density of jumps between two configurations $(C,C')$. Finally, the explicit rate function for the joint probability of the empirical density ${\hat p}(C) $ and of the empirical total activity ${\hat A} $ that represents the total density of jumps of a long trajectory is written in terms of the two matrix elements $ \langle \sqrt{ {\hat p} } \vert H \vert \sqrt{{\hat p}} \rangle$ and $\langle \sqrt{ {\hat p} } \vert H{off} \vert \sqrt{{\hat p}} \rangle $, where $H{off} $ represents the off-diagonal part of the supersymmetric Hamiltonian $H$. This general formalism is then applied to pure or random spin chains with single-spin-flip or two-spin-flip transition rates, where the supersymmetric Hamiltonian $H$ correspond to quantum spin chains with local interactions involving Pauli matrices of two or three neighboring sites.
- B. Derrida, J. Stat. Mech. P07023 (2007).
- R J Harris and G M Schütz, J. Stat. Mech. P07020 (2007).
- A. Lazarescu, J. Phys. A: Math. Theor. 48 503001 (2015).
- A. Lazarescu, J. Phys. A: Math. Theor. 50 254004 (2017).
- A. de La Fortelle, PhD Thesis (2000) ”Contributions to the theory of large deviations and applications” INRIA Rocquencourt.
- V. Lecomte, PhD Thesis (2007) ”Thermodynamique des histoires et fluctuations hors d’équilibre” Université Paris 7.
- R. Chétrite, PhD Thesis (2008) ”Grandes déviations et relations de fluctuation dans certains modèles de systèmes hors d’équilibre” ENS Lyon.
- D. Simon, J. Stat. Mech. (2009) P07017.
- R. Chétrite and H. Touchette Ann. Henri Poincare 16, 2005 (2015).
- R. Chétrite and H. Touchette, J. Stat. Mech. P12001 (2015).
- C. Monthus, J. Stat. Mech. (2019) 023206.
- K. Proesmans and B. Derrida, J. Stat. Mech. (2019) 023201.
- C. Monthus, J. Stat. Mech. (2021) 033303.
- C. Monthus, J. Stat. Mech. (2021) 063301.
- C. Monthus, J. Stat. Mech. (2023) 083204
- M. Polettini, J. Phys. A: Math. Theor. 48 (2015) 365005.
- C. Monthus, J. Stat. Mech. (2021) 033201.
- C. Monthus, J. Stat. Mech. (2021) 063211.
- C. Monthus, J. Stat. Mech. (2024) 013208.
- C. Monthus, J. Stat. Mech. (2022) 013206.
- C. Monthus, J. Stat. Mech. (2023) 063206.
- C. Monthus, J. Stat. Mech. (2024) 013206.
- C. Monthus, 2024 J. Phys. A: Math. Theor. 57 095002.
- C. Monthus, J. Stat. Mech. (2024) 013205.
- C. Monthus, J. Stat. Mech. (2021) 083212.
- C. Monthus, J. Stat. Mech. (2021) 083205
- C. Monthus, J. Stat. Mech. (2021) 103202.
- C. W. Gardiner, “ Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences” (Springer Series in Synergetics), Berlin (1985).
- N.G. Van Kampen, “Stochastic processes in physics and chemistry”, Elsevier Amsterdam (1992).
- H. Risken, “The Fokker-Planck equation : methods of solutions and applications”, Springer Verlag Berlin (1989).
- C. Monthus and P. Le Doussal, Phys. Rev. E 65 (2002) 66129.
- C. Texier and C. Hagendorf, Europhys. Lett. 86 (2009) 37011.
- C. Monthus and T. Garel, J. Stat. Mech. P12017 (2009).
- C. Monthus, J. Stat. Mech. (2023) 063206
- C. L. Henley, 2004 J. Phys.: Condens. Matter 16 S891
- J. Kurchan, J. Phys. A: Math. Gen. 31 3719 (1998).
- J. Kurchan J. Stat. Mech. (2007) P07005.
- R. K. P. Zia and B. Schmittmann J. Stat. Mech. P07012 (2007).
- R.L. Jack and P. Sollich, J. Phys. A: Math. Theor. 47 (2014) 015003.
- C. Monthus, arXiv:2404.16605.