Resolving the $H_0$ and $S_8$ tensions with neutrino mass and chemical potential (2403.11499v1)
Abstract: A simple and natural extension of the standard $\Lambda$CDM model is to allow relic neutrinos to have non-zero degeneracy. We confront this $\Lambda$CDM$\xi$ model, $\Lambda$CDM with neutrino mass $M_\nu$ and degeneracy $\xi_3$ as additional parameters, with the \textit{Planck} TT, lowT, plik--lensing, BAO, and DES datasets, and we observe a strong preference (Bayes factor $\log_{10}B=1.9$) for it over the standard $\Lambda$CDM model. Both the $H_0$ and $S_8$ tensions are resolved to within 1$\sigma$ with the same set of neutrino parameters, along with 3$\sigma$ evidence for nonzero neutrino mass ($M_\nu=0.58{+0.17}_{-0.13}\ \mathrm{eV}$) and degeneracy ($\xi_3=1.27{+0.42}_{-0.22}$). Furthermore, our analysis favors the scalar index $n_s$ to be slightly larger than 1, compatible with some hybrid inflation models, as well as a significantly larger optical depth $\tau$ than the standard Planck value, indicating an earlier onset of reionization.
- Planck Collaboration, Planck 2018 results. VI. Cosmological parameters, A&A 641, A6 (2020), arXiv:1807.06209 [astro-ph.CO] .
- SPT-3G Collaboration, Constraints on ΛΛ\Lambdaroman_Λ CDM extensions from the SPT-3G 2018 E E and T E power spectra, Phys. Rev. D 104, 083509 (2021), arXiv:2103.13618 [astro-ph.CO] .
- DES Collaboration, Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D 105, 023520 (2022), arXiv:2105.13549 [astro-ph.CO] .
- S. Kumar, Remedy of some cosmological tensions via effective phantom-like behavior of interacting vacuum energy, Physics of the Dark Universe 33, 100862 (2021), arXiv:2102.12902 [astro-ph.CO] .
- Dark Energy Survey Collaboration, Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D 98, 043526 (2018), arXiv:1708.01530 [astro-ph.CO] .
- A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D 66, 103511 (2002), arXiv:astro-ph/0205436 [astro-ph] .
- M. Cortês and A. R. Liddle, Viable inflationary models ending with a first-order phase transition, Phys. Rev. D 80, 083524 (2009), arXiv:0905.0289 [astro-ph.CO] .
- A. Linde, Hybrid inflation, Phys. Rev. D 49, 748 (1994), arXiv:astro-ph/9307002 [astro-ph] .
- A. D. Linde, Chaotic inflation, Physics Letters B 129, 177 (1983).
- E. Silverstein and A. Westphal, Monodromy in the CMB: Gravity waves and string inflation, Phys. Rev. D 78, 106003 (2008), arXiv:0803.3085 [hep-th] .
- Simons Observatory Collaboration, The Simons Observatory: science goals and forecasts, J. Cosmology Astropart. Phys. 2019, 056 (2019), arXiv:1808.07445 [astro-ph.CO] .
- A. Lewis, GetDist: a Python package for analysing Monte Carlo samples, arXiv e-prints , arXiv:1910.13970 (2019), arXiv:1910.13970 [astro-ph.IM] .
- J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science and Engineering 9, 90 (2007).
- SciPy 1. 0 Contributors, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature Methods 17, 261 (2020), arXiv:1907.10121 [cs.MS] .
- Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters, A&A 571, A16 (2014), arXiv:1303.5076 [astro-ph.CO] .