Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Duffin-Schaeffer Conjecture for multiplicative Diophantine approximation (2403.11257v1)

Published 17 Mar 2024 in math.NT

Abstract: Given a monotonically decreasing $\psi: \mathbb{N} \to [0,\infty)$, Khintchine's Theorem provides an efficient tool to decide whether, for almost every $\alpha \in \mathbb{R}$, there are infinitely many $(p,q) \in \mathbb{Z}2$ such that $\left\lvert \alpha - \frac{p}{q}\right\rvert \leq \frac{\psi(q)}{q}$. The recent result of Koukoulopoulos and Maynard provides an elegant way of removing monotonicity when only counting reduced fractions. Gallagher showed a multiplicative higher-dimensional generalization to Khintchine's Theorem, again assuming monotonicity. In this article, we prove the following Duffin-Schaeffer-type result for multiplicative approximations: For any $k\geq 1$, any function $\psi: \mathbb{N} \to [0,1/2]$ (not necessarily monotonic) and almost every $\alpha \in \mathbb{R}k$, there exist infinitely many $q$ such that $\prod\limits_{i=1}k \left\lvert \alpha_i - \frac{p_i}{q}\right\rvert \leq \frac{\psi(q)}{qk}, p_1,\ldots,p_k$ all coprime to $q$, if and only if [\sum\limits_{q \in \mathbb{N}} \psi(q) \left(\frac{\varphi(q)}{q} \right)k\log \left(\frac{q}{\varphi(q)\psi(q)}\right){k-1} = \infty.] This settles a conjecture of Beresnevich, Haynes, and Velani.

Citations (2)

Summary

We haven't generated a summary for this paper yet.