Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Neural Crossover (2403.11159v2)

Published 17 Mar 2024 in cs.NE

Abstract: We present a novel multi-parent crossover operator in genetic algorithms (GAs) called ``Deep Neural Crossover'' (DNC). Unlike conventional GA crossover operators that rely on a random selection of parental genes, DNC leverages the capabilities of deep reinforcement learning (DRL) and an encoder-decoder architecture to select the genes. Specifically, we use DRL to learn a policy for selecting promising genes. The policy is stochastic, to maintain the stochastic nature of GAs, representing a distribution for selecting genes with a higher probability of improving fitness. Our architecture features a recurrent neural network (RNN) to encode the parental genomes into latent memory states, and a decoder RNN that utilizes an attention-based pointing mechanism to generate a distribution over the next selected gene in the offspring. To improve the training time, we present a pre-training approach, wherein the architecture is initially trained on a single problem within a specific domain and then applied to solving other problems of the same domain. We compare DNC to known operators from the literature over two benchmark domains -- bin packing and graph coloring. We compare with both two- and three-parent crossover, outperforming all baselines. DNC is domain-independent and can be easily applied to other problem domains.

Citations (1)

Summary

We haven't generated a summary for this paper yet.