Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spiking Wavelet Transformer (2403.11138v5)

Published 17 Mar 2024 in cs.NE

Abstract: Spiking neural networks (SNNs) offer an energy-efficient alternative to conventional deep learning by emulating the event-driven processing manner of the brain. Incorporating Transformers with SNNs has shown promise for accuracy. However, they struggle to learn high-frequency patterns, such as moving edges and pixel-level brightness changes, because they rely on the global self-attention mechanism. Learning these high-frequency representations is challenging but essential for SNN-based event-driven vision. To address this issue, we propose the Spiking Wavelet Transformer (SWformer), an attention-free architecture that effectively learns comprehensive spatial-frequency features in a spike-driven manner by leveraging the sparse wavelet transform. The critical component is a Frequency-Aware Token Mixer (FATM) with three branches: 1) spiking wavelet learner for spatial-frequency domain learning, 2) convolution-based learner for spatial feature extraction, and 3) spiking pointwise convolution for cross-channel information aggregation - with negative spike dynamics incorporated in 1) to enhance frequency representation. The FATM enables the SWformer to outperform vanilla Spiking Transformers in capturing high-frequency visual components, as evidenced by our empirical results. Experiments on both static and neuromorphic datasets demonstrate SWformer's effectiveness in capturing spatial-frequency patterns in a multiplication-free and event-driven fashion, outperforming state-of-the-art SNNs. SWformer achieves a 22.03% reduction in parameter count, and a 2.52% performance improvement on the ImageNet dataset compared to vanilla Spiking Transformers. The code is available at: https://github.com/bic-L/Spiking-Wavelet-Transformer.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yuetong Fang (12 papers)
  2. Ziqing Wang (31 papers)
  3. Lingfeng Zhang (24 papers)
  4. Jiahang Cao (39 papers)
  5. Honglei Chen (8 papers)
  6. Renjing Xu (72 papers)
Citations (2)