Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Learning for Equitable DER Control (2403.11068v1)

Published 17 Mar 2024 in eess.SY and cs.SY

Abstract: In the context of managing distributed energy resources (DERs) within distribution networks (DNs), this work focuses on the task of developing local controllers. We propose an unsupervised learning framework to train functions that can closely approximate optimal power flow (OPF) solutions. The primary aim is to establish specific conditions under which these learned functions can collectively guide the network towards desired configurations asymptotically, leveraging an incremental control approach. The flexibility of the proposed methodology allows to integrate fairness-driven components into the cost function associated with the OPF problem. This addition seeks to mitigate power curtailment disparities among DERs, thereby promoting equitable power injections across the network. To demonstrate the effectiveness of the proposed approach, power flow simulations are conducted using the IEEE 37-bus feeder. The findings not only showcase the guaranteed system stability but also underscore its improved overall performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. P. Mohammadi and S. Mehraeen, “Challenges of PV integration in low-voltage secondary networks,” IEEE Trans. Power Del., vol. 32, no. 1, pp. 525–535, 2017.
  2. A. Bernstein and E. Dall’Anese, “Real-time feedback-based optimization of distribution grids: A unified approach,” IEEE Trans. Control Netw. Syst., vol. 6, no. 3, pp. 1197–1209, 2019.
  3. “IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces,” IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), 2018.
  4. S. Bolognani, R. Carli, G. Cavraro, and S. Zampieri, “On the need for communication for voltage regulation of power distribution grids,” IEEE Trans. Control Netw. Syst., vol. 6, no. 3, pp. 1111–1123, 2019.
  5. I. Murzakhanov, S. Gupta, S. Chatzivasileiadis, and V. Kekatos, “Optimal design of Volt/VAR control rules for inverter-interfaced distributed energy resources,” IEEE Trans. Smart Grid, vol. 15, no. 1, pp. 312–323, 2024.
  6. S. Gupta, A. Mehrizi-Sani, S. Chatzivasileiadis, and V. Kekatos, “Deep learning for scalable optimal design of incremental Volt/VAR control rules,” IEEE Control Systems Lett., vol. 7, pp. 1957–1962, 2023.
  7. W. Cui, J. Li, and B. Zhang, “Decentralized safe reinforcement learning for inverter-based voltage control,” Electr. Pow. Syst. Res., vol. 211, p. 108609, 2022.
  8. J. Feng, Y. Shi, G. Qu, S. H. Low, A. Anandkumar, and A. Wierman, “Stability constrained reinforcement learning for decentralized real-time voltage control,” IEEE Trans. Control Netw. Syst., 2023. To appear.
  9. J. Feng, W. Cui, J. Cortés, and Y. Shi, “Bridging transient and steady-state performance in voltage control: A reinforcement learning approach with safe gradient flow,” IEEE Control Systems Lett., vol. 7, pp. 2845–2850, 2023.
  10. Z. Yuan, G. Cavraro, and J. Cortés, “Constraints on OPF surrogates for learning stable local Volt/Var controllers,” IEEE Control Systems Lett., vol. 7, pp. 2533–2538, 2023.
  11. Z. Yuan, G. Cavraro, M. K. Singh, and J. Cortés, “Learning provably stable local Volt/Var controllers for efficient network operation,” IEEE Trans. Power Syst., vol. 39, no. 1, pp. 2066–2079, 2024.
  12. S. Gupta, V. Kekatos, and M. Jin, “Controlling smart inverters using proxies: A chance-constrained DNN-based approach,” IEEE Trans. Smart Grid, vol. 13, no. 2, pp. 1310–1321, 2021.
  13. X. Su, M. A. S. Masoum, and P. J. Wolfs, “Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced four-wire LV distribution networks,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 967–977, 2014.
  14. S. Xu, Y. Xue, and L. Chang, “Review of power system support functions for inverter-based distributed energy resources-standards, control algorithms, and trends,” IEEE Open J. Power Electron., vol. 2, pp. 88–105, 2021.
  15. S. Poudel, M. Mukherjee, R. Sadnan, and A. P. Reiman, “Fairness-aware distributed energy coordination for voltage regulation in power distribution systems,” IEEE Trans. Sustain. Energy, vol. 14, no. 3, pp. 1866–1880, 2023.
  16. S. Alyami, Y. Wang, C. Wang, J. Zhao, and B. Zhao, “Adaptive real power capping method for fair overvoltage regulation of distribution networks with high penetration of PV systems,” IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2729–2738, 2014.
  17. P. Lusis, L. L. H. Andrew, S. Chakraborty, A. Liebman, and G. Tack, “Reducing the unfairness of coordinated inverter dispatch in PV-rich distribution networks,” in IEEE Milan PowerTech, (Milan, Italy), pp. 1–6, June 2019.
  18. A. M. Kettner and M. Paolone, “On the properties of the power systems nodal admittance matrix,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 1130–1131, 2018.
  19. A. Y. Lam, B. Zhang, and D. N. Tse, “Distributed algorithms for optimal power flow problem,” in Proc. IEEE Conf. on Decision and Control, (Maui, HI, USA), pp. 430–437, Dec. 2012.
  20. M. G. Kashani, M. Mobarrez, and S. Bhattacharya, “Smart inverter volt-watt control design in high PV-penetrated distribution systems,” IEEE Trans. Ind. Applicat., vol. 55, no. 2, pp. 1147–1156, 2019.
  21. J. Seuss, M. J. Reno, M. Lave, R. J. Broderick, and S. Grijalva, “Advanced inverter controls to dispatch distributed PV systems,” in IEEE Photovolt. Specialists Conf., (Portland, OR, USA), pp. 1387–1392, June 2016.
  22. K. Turitsyn, P. Sulc, S. Backhaus, and M. Chertkov, “Options for control of reactive power by distributed photovoltaic generators,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1063–1073, 2011.
  23. H. Zhu and H. J. Liu, “Fast local voltage control under limited reactive power: Optimality and stability analysis,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 3794–3803, 2015.
  24. M. Emmanuel, J. Giraldez, P. Gotseff, and A. Hoke, “Estimation of solar photovoltaic energy curtailment due to volt–watt control,” IET Renewable Power Generation, vol. 14, no. 4, pp. 640–646, 2020.
  25. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 2909–2913, 2016.
  26. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  27. J. H. Braslavsky, L. D. Collins, and J. K. Ward, “Voltage stability in a grid-connected inverter with automatic volt-watt and volt-var functions,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 84–94, 2017.
  28. G. Cavraro and V. Kekatos, “Inverter probing for power distribution network topology processing,” IEEE Trans. Control Netw. Syst., vol. 6, no. 3, pp. 980–992, 2019.

Summary

We haven't generated a summary for this paper yet.