Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse learning of black-box aggregator for robust Nash equilibrium (2403.10980v1)

Published 16 Mar 2024 in cs.GT, cs.SY, eess.SY, and math.OC

Abstract: In this note, we investigate the robustness of Nash equilibria (NE) in multi-player aggregative games with coupling constraints. There are many algorithms for computing an NE of an aggregative game given a known aggregator. When the coupling parameters are affected by uncertainty, robust NE need to be computed. We consider a scenario where players' weight in the aggregator is unknown, making the aggregator kind of "a black box". We pursue a suitable learning approach to estimate the unknown aggregator by proposing an inverse variational inequality-based relationship. We then utilize the counterpart to reconstruct the game and obtain first-order conditions for robust NE in the worst case. Furthermore, we characterize the generalization property of the learning methodology via an upper bound on the violation probability. Simulation experiments show the effectiveness of the proposed inverse learning approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. D. Paccagnan, B. Gentile, F. Parise, M. Kamgarpour, and J. Lygeros, “Distributed computation of generalized Nash equilibria in quadratic aggregative games with affine coupling constraints,” in 2016 IEEE 55th Conference on Decision and Control (CDC).   IEEE, 2016, pp. 6123–6128.
  2. J. Lei, U. V. Shanbhag, and J. Chen, “Distributed computation of Nash equilibria for monotone aggregative games via iterative regularization,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 2285–2290.
  3. S. Huang, J. Lei, and Y. Hong, “A linearly convergent distributed Nash equilibrium seeking algorithm for aggregative games,” IEEE Transactions on Automatic Control, vol. 68, no. 3, pp. 1753–1759, 2023.
  4. M. Ye and G. Hu, “Game design and analysis for price-based demand response: An aggregate game approach,” IEEE Transactions on Cybernetics, vol. 47, no. 3, pp. 720–730, 2016.
  5. J. Barrera and A. Garcia, “Dynamic incentives for congestion control,” IEEE Transactions on Automatic Control, vol. 60, no. 2, pp. 299–310, 2014.
  6. R. Cornes, “Aggregative environmental games,” Environmental and Resource Economics, vol. 63, no. 2, pp. 339–365, 2016.
  7. J. Koshal, A. Nedić, and U. V. Shanbhag, “Distributed algorithms for aggregative games on graphs,” Operations Research, vol. 64, no. 3, pp. 680–704, 2016.
  8. S. Liang, P. Yi, and Y. Hong, “Distributed Nash equilibrium seeking for aggregative games with coupled constraints,” Automatica, vol. 85, pp. 179–185, 2017.
  9. F. Fabiani, K. Margellos, and P. J. Goulart, “On the robustness of equilibria in generalized aggregative games,” in 2020 59th IEEE Conference on Decision and Control (CDC).   IEEE, 2020, pp. 3725–3730.
  10. G. Belgioioso, A. Nedić, and S. Grammatico, “Distributed generalized Nash equilibrium seeking in aggregative games on time-varying networks,” IEEE Transactions on Automatic Control, vol. 66, no. 5, pp. 2061–2075, 2020.
  11. G. Xu, G. Chen, H. Qi, and Y. Hong, “Efficient algorithm for approximating Nash equilibrium of distributed aggregative games,” IEEE Transactions on Cybernetics, vol. 53, no. 7, pp. 4375–4387, 2023.
  12. H. Yang, X. Xie, and A. V. Vasilakos, “Noncooperative and cooperative optimization of electric vehicle charging under demand uncertainty: A robust stackelberg game,” IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1043–1058, 2015.
  13. M. E. Nikoofal and J. Zhuang, “Robust allocation of a defensive budget considering an attacker’s private information,” Risk Analysis: An International Journal, vol. 32, no. 5, pp. 930–943, 2012.
  14. Z. Cheng, G. Chen, and Y. Hong, “Single-leader-multiple-followers stackelberg security game with hypergame framework,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 954–969, 2022.
  15. M. Aghassi and D. Bertsimas, “Robust game theory,” Mathematical Programming, vol. 107, no. 1-2, pp. 231–273, 2006.
  16. D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications of robust optimization,” SIAM Review, vol. 53, no. 3, pp. 464–501, 2011.
  17. G. C. Calafiore and M. C. Campi, “The scenario approach to robust control design,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 742–753, 2006.
  18. G. Chen, Y. Ming, Y. Hong, and P. Yi, “Distributed algorithm for ε𝜀\varepsilonitalic_ε-generalized Nash equilibria with uncertain coupled constraints,” Automatica, vol. 123, p. 109313, 2021.
  19. G. Xu, G. Chen, and H. Qi, “Algorithm design and approximation analysis on distributed robust game,” Journal of Systems Science and Complexity, vol. 36, no. 2, pp. 480–499, 2023.
  20. M. Fochesato, F. Fabiani, and J. Lygeros, “Generalized uncertain Nash games: Reformulation and robust equilibrium seeking,” in 2023 European Control Conference (ECC), 2023, pp. 1–6.
  21. F. Fele and K. Margellos, “Probably approximately correct Nash equilibrium learning,” IEEE Transactions on Automatic Control, vol. 66, no. 9, pp. 4238–4245, 2020.
  22. F. Fabiani, K. Margellos, and P. J. Goulart, “Probabilistic feasibility guarantees for solution sets to uncertain variational inequalities,” Automatica, vol. 137, p. 110120, 2022.
  23. G. Pantazis, F. Fele, and K. Margellos, “A priori data-driven robustness guarantees on strategic deviations from generalised Nash equilibria,” arXiv preprint arXiv:2304.05308, 2023.
  24. G. Calafiore and M. C. Campi, “Uncertain convex programs: randomized solutions and confidence levels,” Mathematical Programming, vol. 102, pp. 25–46, 2005.
  25. F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,” Annals of Operations Research, vol. 175, no. 1, pp. 177–211, 2010.
  26. D. Bertsimas, V. Gupta, and I. C. Paschalidis, “Data-driven estimation in equilibrium using inverse optimization,” Mathematical Programming, vol. 153, pp. 595–633, 2015.
  27. M. C. Campi and S. Garatti, “The exact feasibility of randomized solutions of uncertain convex programs,” SIAM Journal on Optimization, vol. 19, no. 3, pp. 1211–1230, 2008.
  28. M. C. Campi, S. Garatti, and F. A. Ramponi, “A general scenario theory for nonconvex optimization and decision making,” IEEE Transactions on Automatic Control, vol. 63, no. 12, pp. 4067–4078, 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com