Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lambda: Learning Matchable Prior For Entity Alignment with Unlabeled Dangling Cases (2403.10978v2)

Published 16 Mar 2024 in cs.CL and cs.IR

Abstract: We investigate the entity alignment (EA) problem with unlabeled dangling cases, meaning that partial entities have no counterparts in the other knowledge graph (KG), and this type of entity remains unlabeled. To address this challenge, we propose the framework \textit{Lambda} for dangling detection and then entity alignment. Lambda features a GNN-based encoder called KEESA with spectral contrastive learning for EA and a positive-unlabeled learning algorithm for dangling detection called iPULE. iPULE offers theoretical guarantees of unbiasedness, uniform deviation bounds, and convergence. Experimental results demonstrate that each component contributes to overall performances that are superior to baselines, even when baselines additionally exploit 30\% of dangling entities labeled for training.

Summary

We haven't generated a summary for this paper yet.