Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of strongly nonlocal sets of three states in any N-partite system (2403.10969v1)

Published 16 Mar 2024 in quant-ph

Abstract: The notion of strong nonlocality, which refers to local irreducibility of a set of orthogonal multipartite quantum states across each bipartition of the subsystems, was put forward by Halder et al. in [Phys. Rev. Lett. 122, 040403 (2019)]. Here, we show the existence of three orthogonal quantum states in (C2){\otimes N} that cannot be perfectly distinguished locally across any bipartition of the subsystems. Specifically, all these three states are genuinely entangled, among which two are the N-qubit GHZ pairs. Since any three locally indistinguishable states are always locally irreducible, the three N-partite orthogonal states we present are strongly nonlocal. Thus, the caridnality of strongly nonlocal sets here is dramatically smaller than all known ones.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Phys. Rev. A 59: 1070-1091 (1999)
  2. Phys. Rev. Lett. 82, 5385 (1999)
  3. Phys. Rev. Lett. 85, 4972 (2000)
  4. Phys. Rev. Lett. 89, 147901 (2002)
  5. Phys. Rev. Lett. 87, 277902 (2001)
  6. Phys. Rev. A 65, 062307 (2002)
  7. Commun. Math. Phys. 238, 379-410 (2003)
  8. Phys. Rev. Lett 90, 047902 (2003)
  9. H. Fan, Distinguishability and Indistinguishability by Local Operations and Classical Communication, Phys. Rev. Lett. 92, 177905 (2004)
  10. Phys. Rev. Lett 96, 040501 (2006)
  11. M. Nathanson, Distinguishing bipartitite orthogonal states using LOCC: Best and worst cases, J. Math. Phys. 46, 062103(2005)
  12. Phys. Rev. Lett. 109, 020506 (2012)
  13. A. Cosentino,   Positive-partial-transpose indistinguishable states via semidefinite programming, Phys. Rev. A 87, 012321 (2013)
  14. A. Cosentino and V. Russo, Small sets of locally indistinguishable orthogonal maximally entangled states, Quantum Inf. Comput. 14, 1098—1106 (2014)
  15. Phys. Rev. A 91,042318 (2015)
  16. S. Yu and C. H. Oh, Detecting the local indistinguishability of maximally entangled states, (arXiv:1502.01274v1)
  17. Phys. Rev. A 108, 012418 (2023)
  18. Phys. Rev. Lett. 122, 040403 (2019)
  19. Phys. Rev. A 100, 032321 (2019)
  20. J. Phys. A: Math. Theor. 54, 445301 (2021)
  21. Phys. Rev. A 104, 052433 (2021)
  22. New J. Phys. 24, 113025 (2022)
  23. Phys. Rev. A 108, 022405 (2023)
  24. Phys. Rev. A 109, 022428 (2024)
  25. Phys. Rev. A 102, 042228 (2020)
  26. Phys. Rev. A 102, 042202 (2020)
  27. Phys. Rev. A 104, 012424 (2021)
  28. Quantum 6, 619 (2022)
  29. Phys. Rev. A 106, 052209 (2022)
  30. Phys. Rev. A 107, 042214 (2023)
  31. M. -S. Li snd Y. -L. Wang,   Bounds on the smallest sets of quantum states with special quantum nonlocality, Quantum 7, 1101 (2023)
  32. Phys. Rev. A 108, 062407 (2023)
  33. Phys. Rev. A 109, 022220 (2024)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com