Existence of strongly nonlocal sets of three states in any N-partite system (2403.10969v1)
Abstract: The notion of strong nonlocality, which refers to local irreducibility of a set of orthogonal multipartite quantum states across each bipartition of the subsystems, was put forward by Halder et al. in [Phys. Rev. Lett. 122, 040403 (2019)]. Here, we show the existence of three orthogonal quantum states in (C2){\otimes N} that cannot be perfectly distinguished locally across any bipartition of the subsystems. Specifically, all these three states are genuinely entangled, among which two are the N-qubit GHZ pairs. Since any three locally indistinguishable states are always locally irreducible, the three N-partite orthogonal states we present are strongly nonlocal. Thus, the caridnality of strongly nonlocal sets here is dramatically smaller than all known ones.
- Phys. Rev. A 59: 1070-1091 (1999)
- Phys. Rev. Lett. 82, 5385 (1999)
- Phys. Rev. Lett. 85, 4972 (2000)
- Phys. Rev. Lett. 89, 147901 (2002)
- Phys. Rev. Lett. 87, 277902 (2001)
- Phys. Rev. A 65, 062307 (2002)
- Commun. Math. Phys. 238, 379-410 (2003)
- Phys. Rev. Lett 90, 047902 (2003)
- H. Fan, Distinguishability and Indistinguishability by Local Operations and Classical Communication, Phys. Rev. Lett. 92, 177905 (2004)
- Phys. Rev. Lett 96, 040501 (2006)
- M. Nathanson, Distinguishing bipartitite orthogonal states using LOCC: Best and worst cases, J. Math. Phys. 46, 062103(2005)
- Phys. Rev. Lett. 109, 020506 (2012)
- A. Cosentino, Positive-partial-transpose indistinguishable states via semidefinite programming, Phys. Rev. A 87, 012321 (2013)
- A. Cosentino and V. Russo, Small sets of locally indistinguishable orthogonal maximally entangled states, Quantum Inf. Comput. 14, 1098—1106 (2014)
- Phys. Rev. A 91,042318 (2015)
- S. Yu and C. H. Oh, Detecting the local indistinguishability of maximally entangled states, (arXiv:1502.01274v1)
- Phys. Rev. A 108, 012418 (2023)
- Phys. Rev. Lett. 122, 040403 (2019)
- Phys. Rev. A 100, 032321 (2019)
- J. Phys. A: Math. Theor. 54, 445301 (2021)
- Phys. Rev. A 104, 052433 (2021)
- New J. Phys. 24, 113025 (2022)
- Phys. Rev. A 108, 022405 (2023)
- Phys. Rev. A 109, 022428 (2024)
- Phys. Rev. A 102, 042228 (2020)
- Phys. Rev. A 102, 042202 (2020)
- Phys. Rev. A 104, 012424 (2021)
- Quantum 6, 619 (2022)
- Phys. Rev. A 106, 052209 (2022)
- Phys. Rev. A 107, 042214 (2023)
- M. -S. Li snd Y. -L. Wang, Bounds on the smallest sets of quantum states with special quantum nonlocality, Quantum 7, 1101 (2023)
- Phys. Rev. A 108, 062407 (2023)
- Phys. Rev. A 109, 022220 (2024)