2000 character limit reached
Kodaira vanishing theorems for Kahler Lie algebroids (2403.10876v1)
Published 16 Mar 2024 in math.DG
Abstract: A Lie algebroid is a generalization of Lie algebra that provides a general framework to describe the symmetries of a manifold. In this paper, we generalize the Kodaira vanishing theorem, which is a basic result in complex geometry, to Kahler Lie algebroids. The generalization of the Kodaira vanishing theorem states that the kernel of the Lie algebroid Laplace operator on Lie algebroid positive line bundle-valued (p,q)-forms vanishes when p+q is sufficiently large. The most difficult part of the proof of the generalized Kodaira vanishing theorem is the generalization of the Kahler identities to Lie algebroids. In this paper, we provide an approach by using local coordinate calculation.
- C. Ehresmann. Catégories topologiques et categories différentiables. Colloque de Géométrie Différentielle Globale, pages 137–150, 1959.
- C. Ehresmann. Catégories structurées. Annales Scientifiques de l’École Normale Supérieure, 80(4):349–426, 1963.
- J. Pradines. Théorie de lie pour les groupoïdes différentiables. calcul différentiel dans la categorie des groupoïdes infinitésimaux. C.R.Acad. Sci. Paris, 264:245–248, 1963.
- A. Lichnerowicz. Les variétés de poisson et leurs algèbres de lie associées. Journal of Differential Geometry, 12:253–300, 1977.
- A. Weinstein A. Coste, P. Dazord. Groupoïdes symplectiques. Publications du Département de Mathématiques, pages 1–62, 1987.
- K. Mackenzie. Lie groupoids and Lie algebroids in differential geometry. Cambridge University Press, Cambridge, 1987.
- K. Mackenzie. General theory of Lie groupoids and Lie algebroids. Cambridge University Press, Cambridge, 2005.
- I. Moerdijk. Introduction to foliations and Lie groupoids. Cambridge University Press, Cambridge, 2005.
- S. Chemla. A duality property for complex lie algebroids. Mathematische Zeitschrift, 232:367–388, 1999.
- A. Weinstein A. Cannas da Silva. Geometric models for noncommutative algebras. Berkeley Math. Lecture Notes, 1999.
- A. Weinstein E. Leichtnam, X. Tang. Poisson geometry and deformation quantization near a strictly pseudoconvex boundary. Journal of the European Mathematical Society, 9(4), 2007.
- M. Boucetta S. Benayadi. On para-kähler lie algebroids and generalized pseudo-hessian structures. arXiv, 2016.
- A. Makhlouf E. Peyghan, L. Nourmohammadifar. Para-kahler hom-lie algebroids. arXiv, 2018.
- M. M. Rezaii Z. Pirbodaghi. Forms and chern classes on hermitian lie algebroids. Bulletin of the Iranian Mathematical Society, 46:19–36, 2019.
- M. M. Rezaii Z. Pirbodaghi. Vanishing theorems on kähler lie algebroids. International Journal of Geometric Methods in Modern Physics, 17(4), 2020.
- A. Weinstein. The integration problem for complex lie algebroids. arXiv, 2006.
- P. Popescu C. Ida. On almost complex lie algebroids. Mediterranean Journal of Mathematics, 13:803–824, 2016.
- J. Harris P. Griffiths. Principles of algebraic geometry. Wiley-Interscience, 1994.
- A. Moroianu. Lectures on Kähler geometry. Cambridge University Press, 2007.
- M. Vergne N. Berline, E. Getzler. Heat kernels and Dirac operators. Springer, 2004.
- R. Melrose. The Atiyah-Patodi-Singer index theorem. CRC Press, 1993.
- A. R. Pires V. Guillemin, E. Miranda. Symplectic and poisson geometry on b-manifolds. Advances in Mathematics, 264(20):864–896, 2014.
- M. Zambon S. Geudens. Coisotropic submanifolds in b-symplectic geometry. arXiv, 2020.
- G. A. Mendoza. Complex b-manifolds. arXiv, 2013.
- A. Weinstein S. Evens, J.-H. Lu. Transverse measures, the modular class and a cohomology pairing for lie algebroids. The Quarterly Journal of Mathematics, 50(200):417–436, 1999.