Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expansion of strongly interacting dipolar bosons in 1D optical lattices (2403.10862v1)

Published 16 Mar 2024 in cond-mat.quant-gas

Abstract: We numerically study the expansion dynamics of initially localized dipolar bosons in a homogeneous 1D optical lattice for different initial states. Comparison is made to interacting bosons with contact interaction. For shallow lattices the expansion is unimodal and ballistic, while strong lattices suppress tunneling. However for intermediate lattice depths a strong interplay between dipolar interaction and lattice depth occurs. The expansion is found to be bimodal, the central cloud expansion can be distinguished from the outer halo structure. In the regime of strongly interactions dipolar bosons exhibit two time scales, with an initial diffusion and then arrested transport in the long time; while strongly interacting bosons in the fermionized limit exhibit ballistic expansion. Our study highlights how different lattice depths and initial states can be manipulated to control tunneling dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).
  2. U. Schneider, L. Hackermüller, and J. e. a. Ronzheimer, Fermionic transport in a homogeneous hubbard model: Out-of-equilibrium dynamics with ultracold atoms, Nature Phys 8, 213 (2012).
  3. M. Collura, S. Sotiriadis, and P. Calabrese, Quench dynamics of a tonks–girardeau gas released from a harmonic trap, J. Stat. Mech. P09025 (2013).
  4. T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-dimensional tonks-girardeau gas, Science .
  5. G. M. Koutentakis, S. I. Mistakidis, and P. Schmelcher, Quench-induced resonant tunneling mechanisms of bosons in an optical lattice with harmonic confinement, Phys. Rev. A 95, 013617 (2017).
  6. P. Siegl, S. I. Mistakidis, and P. Schmelcher, Many-body expansion dynamics of a bose-fermi mixture confined in an optical lattice, Phys. Rev. A 97, 053626 (2018).
  7. W. Xu and M. Rigol, Expansion of one-dimensional lattice hard-core bosons at finite temperature, Phys. Rev. A 95, 033617 (2017).
  8. M. Trujillo-Martinez, A. Posazhennikova, and J. Kroha, Expansion dynamics in two-dimensional bose-hubbard lattices: Bose-einstein condensate and thermal cloud, Phys. Rev. A 103, 033311 (2021).
  9. F. A. W. Mark Jreissaty, Juan Carrasquilla and M. Rigol, Expansion of bose-hubbard mott insulators in optical lattices, Phys. Rev. A 84, 043610 (2011).
  10. A. Jreissaty, J. Carrasquilla, and M. Rigol, Self-trapping in the two-dimensional bose-hubbard model, Phys. Rev. A 88, 031606(R) (2013).
  11. J. Hauschild, F. Pollmann, and F. Heidrich-Meisner, Sudden expansion and domain-wall melting of strongly interacting bosons in two-dimensional optical lattices and on multileg ladders, Phys. Rev. A 92, 053629 (2015).
  12. A. Trombettoni and A. Smerzi, Discrete solitons and breathers with dilute bose-einstein condensates, Phys. Rev. Lett. 86, 2353 (2001a).
  13. A. Trombettoni and A. Smerzi, Variational dynamics of bose-einstein condensates in deep optical lattices, Journal of Physics B: Atomic, Molecular and Optical Physics 34, 4711 (2001b).
  14. C. E. Creffield, Coherent control of self-trapping of cold bosonic atoms, Phys. Rev. A 75, 031607(R) (2007).
  15. R. Roy, B. Chakrabarti, and A. Trombettoni, Quantum dynamics of few dipolar bosons in a double-well potential., European Physical Journal D 76, 215303 (2022).
  16. O. Morsch and M. Oberthaler, Dynamics of bose-einstein condensates in optical lattices, Rev. Mod. Phys. 78, 179 (2006).
  17. L. M. Duan, Effective hamiltonian for fermions in an optical lattice across a feshbach resonance, Phys. Rev. Lett. 95, 243202 (2005).
  18. W. Li, L. Hamadeh, and I. Lesanovsky, Probing the interaction between rydberg-dressed atoms through interference, Phys. Rev. A 85, 053615 (2012).
  19. K. R. Hazzard, B. Gadway, and e. a. Michael Foss-Feig, Many-body dynamics of dipolar molecules in an optical lattice, Phys. Rev. Lett. 113, 195302 (2014).
  20. L. T., T. Koch, and F. B. et al., Strong dipolar effects in a quantum ferrofluid., Nature 448, 672 (2007).
  21. T. Koch, T. Lahaye, and M. J. et al., Stabilization of a purely dipolar quantum gas against collapse., Nature Phys 4, 218 (2008).
  22. L. Su, A. Douglas, and M. e. a. Szurek, Dipolar quantum solids emerging in a hubbard quantum simulator, Nature 622, 724 (2023).
  23. S. Zöllner, Ground states of dipolar gases in quasi-one-dimensional ring traps, Phys. Rev. A 84, 063619 (2011).
  24. A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, General variational many-body theory with complete self-consistency for trapped bosonic systems, Phys. Rev. A 73, 063626 (2006).
  25. A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Role of excited states in the splitting of a trapped interacting bose-einstein condensate by a time-dependent barrier, Phys. Rev. Lett. 99, 030402 (2007).
  26. O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Unified view on multiconfigurational time propagation for systems consisting of identical particles, J. Chem. Phys. 127, 154103 (2007).
  27. O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Multiconfigurational time-dependent hartree method for bosons: Many-body dynamics of bosonic systems, Phys. Rev. A 77, 033613 (2008).
  28. A. U. J. Lode, Multiconfigurational time-dependent hartree method for bosons with internal degrees of freedom: Theory and composite fragmentation of multicomponent bose-einstein condensates, Phys. Rev. A 93, 063601 (2016).
  29. S. Sinha and L. Santos, Cold dipolar gases in quasi-one-dimensional geometries, Phys. Rev. Lett. 99, 140406 (2007).
  30. F. Deuretzbacher, J. C. Cremon, and S. M. Reimann, Ground-state properties of few dipolar bosons in a quasi-one-dimensional harmonic trap, Phys. Rev. A 81, 063616 (2010).
  31. B. Chatterjee and A. U. J. Lode, Order parameter and detection for a finite ensemble of crystallized one-dimensional dipolar bosons in optical lattices, Phys. Rev. A 98, 053624 (2018).
  32. P. Kramer and M. Saraceno, Geometry of the Time-Dependent Variational Principle in Quantum Mechanics, Lecture Notes in Physics, Vol. 140 (Springer, 1981).
  33. S. Kvaal, Variational formulations of the coupled-cluster method in quantum chemistry, Molecular Physics 111, 1100 (2013).
  34. A. McLachlan, A variational solution of the time-dependent schrodinger equation, Molecular Physics 8, 39 (1964).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com