Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Learning-based Motion Models in Multi-Object Tracking (2403.10826v1)

Published 16 Mar 2024 in cs.CV

Abstract: In the field of multi-object tracking (MOT), traditional methods often rely on the Kalman Filter for motion prediction, leveraging its strengths in linear motion scenarios. However, the inherent limitations of these methods become evident when confronted with complex, nonlinear motions and occlusions prevalent in dynamic environments like sports and dance. This paper explores the possibilities of replacing the Kalman Filter with various learning-based motion model that effectively enhances tracking accuracy and adaptability beyond the constraints of Kalman Filter-based systems. In this paper, we proposed MambaTrack, an online motion-based tracker that outperforms all existing motion-based trackers on the challenging DanceTrack and SportsMOT datasets. Moreover, we further exploit the potential of the state-space-model in trajectory feature extraction to boost the tracking performance and proposed MambaTrack+, which achieves the state-of-the-art performance on DanceTrack dataset with 56.1 HOTA and 54.9 IDF1.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com