Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetry-Guided Reinforcement Learning for Versatile Quadrupedal Gait Generation (2403.10723v3)

Published 15 Mar 2024 in eess.SY and cs.SY

Abstract: Quadrupedal robots exhibit a wide range of viable gaits, but generating specific footfall sequences often requires laborious expert tuning of numerous variables, such as touch-down and lift-off events and holonomic constraints for each leg. This paper presents a unified reinforcement learning framework for generating versatile quadrupedal gaits by leveraging the intrinsic symmetries of dynamic legged systems. We propose a symmetry-guided reward function design that incorporates temporal, morphological, and time-reversal symmetries, streamlining gait design, accelerating learning, and enhancing robot agility. By focusing on preserved symmetries and natural dynamics, our approach eliminates the need for predefined trajectories or footfall sequences, enabling smooth transitions between diverse locomotion patterns such as trotting, bounding, half-bounding, and galloping. Implemented on the Petoi Bittle robot, our method demonstrates robust performance across a range of speeds in both simulations and hardware tests, significantly improving gait adaptability without extensive reward tuning or explicit foot placement control. This work provides insights into dynamic locomotion strategies and underscores the crucial role of symmetries in robotic gait design.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. H. Zhang, L. He, and D. Wang, “Deep reinforcement learning for real-world quadrupedal locomotion: a comprehensive review,” Intelligence & Robotics, vol. 2, no. 3, p. 275–297, 2022. [Online]. Available: http://dx.doi.org/10.20517/ir.2022.20
  2. C. Gehring, C. Dario Bellicoso, P. Fankhauser, S. Coros, and M. Hutter, “Quadrupedal locomotion using trajectory optimization and hierarchical whole body control,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, May 2017. [Online]. Available: http://dx.doi.org/10.1109/ICRA.2017.7989557
  3. D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control,” 2019. [Online]. Available: https://arxiv.org/abs/1909.06586
  4. Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath, “Reinforcement learning for robust parameterized locomotion control of bipedal robots,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 2811–2817.
  5. K. Green, Y. Godse, J. Dao, R. L. Hatton, A. Fern, and J. Hurst, “Learning spring mass locomotion: Guiding policies with a reduced-order model,” IEEE Robotics and Automation Letters, vol. 6, no. 2, p. 3926–3932, Apr. 2021. [Online]. Available: http://dx.doi.org/10.1109/LRA.2021.3066833
  6. A. Shirwatkar, V. K. Kurva, D. Vinoda, A. Singh, A. Sagi, H. Lodha, B. G. Goswami, S. Sood, K. Nehete, and S. Kolathaya, “Force control for robust quadruped locomotion: A linear policy approach,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 5113–5119.
  7. F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep tracking control,” Science Robotics, vol. 9, no. 86, Jan. 2024. [Online]. Available: http://dx.doi.org/10.1126/scirobotics.adh5401
  8. J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of all common bipedal gaits via periodic reward composition,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, May 2021. [Online]. Available: http://dx.doi.org/10.1109/ICRA48506.2021.9561814
  9. J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal stair traversal via sim-to-real reinforcement learning,” arXiv preprint arXiv:2105.08328, 2021.
  10. H. Duan, A. Malik, J. Dao, A. Saxena, K. Green, J. Siekmann, A. Fern, and J. Hurst, “Sim-to-real learning of footstep-constrained bipedal dynamic walking,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 10 428–10 434.
  11. G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot control for generalization with multiplicity of behavior,” in Conference on Robot Learning.   PMLR, 2023, pp. 22–31.
  12. G. Schöner, W. Jiang, and J. Kelso, “A synergetic theory of quadrupedal gaits and gait transitions,” Journal of Theoretical Biology, vol. 142, no. 3, pp. 359–391, Feb. 1990. [Online]. Available: https://doi.org/10.1016/s0022-5193(05)80558-2
  13. M. Golubitsky, I. Stewart, P.-L. Buono, and J. Collins, “A modular network for legged locomotion,” Physica D: Nonlinear Phenomena, vol. 115, no. 1-2, pp. 56–72, Apr. 1998. [Online]. Available: https://doi.org/10.1016/s0167-2789(97)00222-4
  14. P.-L. Buono and M. Golubitsky, “Models of central pattern generators for quadruped locomotion,” Journal of Mathematical Biology, vol. 42, no. 4, pp. 291–326, Apr. 2001. [Online]. Available: https://doi.org/10.1007/s002850000058
  15. I. Stewart, “Spontaneous symmetry-breaking in a network model for quadruped locomotion,” International Journal of Bifurcation and Chaos, vol. 27, no. 14, p. 1730049, Dec. 2017. [Online]. Available: https://doi.org/10.1142/s021812741730049x
  16. J. Ding and Z. Gan, “Breaking symmetries leads to diverse quadrupedal gaits,” 2023. [Online]. Available: https://arxiv.org/abs/2303.04857
  17. “Petoi smart robot dog,” https://www.petoi.com/pages/bittle-smart-robot-dog-model-overview, accessed: 2024-03-15.
  18. Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback control for cassie with deep reinforcement learning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, Oct. 2018. [Online]. Available: http://dx.doi.org/10.1109/IROS.2018.8593722
  19. Y. Shao, Y. Jin, X. Liu, W. He, H. Wang, and W. Yang, “Learning free gait transition for quadruped robots via phase-guided controller,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1230–1237, 2021.
  20. T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, “Learning to walk via deep reinforcement learning,” in Robotics: Science and Systems XV, ser. RSS2019.   Robotics: Science and Systems Foundation, June 2019. [Online]. Available: http://dx.doi.org/10.15607/RSS.2019.XV.011
  21. N. Kohl and P. Stone, “Policy gradient reinforcement learning for fast quadrupedal locomotion,” in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004.   IEEE, 2004. [Online]. Available: http://dx.doi.org/10.1109/ROBOT.2004.1307456
  22. A. D. Ames, A. Abate, and S. Sastry, “Sufficient conditions for the existence of zeno behavior,” in Proceedings of the 44th IEEE Conference on Decision and Control.   IEEE, 2005, pp. 696–701.
  23. M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid bodies through contact,” The International Journal of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.
  24. Z. Gan, Z. Jiao, and C. D. Remy, “On the dynamic similarity between bipeds and quadrupeds: A case study on bounding,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3614–3621, 2018.
  25. Y. G. Alqaham, J. Cheng, and Z. Gan, “Energetic analysis on the optimal bounding gaits of quadrupedal robots,” 2023.
  26. M. H. Raibert, “Running with symmetry,” The International Journal of Robotics Research, vol. 5, no. 4, pp. 3–19, Dec. 1986. [Online]. Available: https://doi.org/10.1177/027836498600500401
  27. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  28. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  29. V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym: High performance gpu-based physics simulation for robot learning,” 2021.
  30. M. Hildebrand, “Symmetrical gaits of primates,” American Journal of Physical Anthropology, vol. 26, no. 2, pp. 119–130, Mar. 1967. [Online]. Available: https://doi.org/10.1002/ajpa.1330260203

Summary

We haven't generated a summary for this paper yet.