Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
130 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Development and Application of a Monte Carlo Tree Search Algorithm for Simulating Da Vinci Code Game Strategies (2403.10720v1)

Published 15 Mar 2024 in cs.AI

Abstract: In this study, we explore the efficiency of the Monte Carlo Tree Search (MCTS), a prominent decision-making algorithm renowned for its effectiveness in complex decision environments, contingent upon the volume of simulations conducted. Notwithstanding its broad applicability, the algorithm's performance can be adversely impacted in certain scenarios, particularly within the domain of game strategy development. This research posits that the inherent branch divergence within the Da Vinci Code board game significantly impedes parallelism when executed on Graphics Processing Units (GPUs). To investigate this hypothesis, we implemented and meticulously evaluated two variants of the MCTS algorithm, specifically designed to assess the impact of branch divergence on computational performance. Our comparative analysis reveals a linear improvement in performance with the CPU-based implementation, in stark contrast to the GPU implementation, which exhibits a non-linear enhancement pattern and discernible performance troughs. These findings contribute to a deeper understanding of the MCTS algorithm's behavior in divergent branch scenarios, highlighting critical considerations for optimizing game strategy algorithms on parallel computing architectures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. K. Xu, X. Wang, Z. Hu, and Z. Zhang, “3d face recognition based on twin neural network combining deep map and texture,” in 2019 IEEE 19th International Conference on Communication Technology (ICCT).   IEEE, 2019, pp. 1665–1668.
  2. P. Shi, Y. Cui, K. Xu, M. Zhang, and L. Ding, “Data consistency theory and case study for scientific big data,” Information, vol. 10, no. 4, p. 137, 2019.
  3. Z. Hu, X. Wang, K. Xu, and P. Dong, “Real-time target tracking based on pcanet-csk algorithm,” in Proceedings of the 2019 3rd International Conference on Computer Science and Artificial Intelligence, 2019, pp. 343–346.
  4. X. Yan, M. Xiao, W. Wang, Y. Li, and F. Zhang, “A self-guided deep learning technique for mri image noise reduction,” Journal of Theory and Practice of Engineering Science, vol. 4, no. 01, pp. 109–117, 2024.
  5. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.
  6. Z. Zou, M. Careem, A. Dutta, and N. Thawdar, “Unified characterization and precoding for non-stationary channels,” in ICC 2022-IEEE International Conference on Communications.   IEEE, 2022, pp. 5140–5146.
  7. W. Weimin, L. Yufeng, Y. Xu, X. Mingxuan, and G. Min, “Enhancing liver segmentation: A deep learning approach with eas feature extraction and multi-scale fusion,” International Journal of Innovative Research in Computer Science & Technology, vol. 12, no. 1, pp. 26–34, 2024.
  8. Y. Zhang, X. Wang, L. Gao, and Z. Liu, “Manipulator control system based on machine vision,” in International Conference on Applications and Techniques in Cyber Intelligence ATCI 2019: Applications and Techniques in Cyber Intelligence 7.   Springer, 2020, pp. 906–916.
  9. Z.-b. Zou, L.-p. Song, and Z.-l. Song, “Labeled box-particle phd filter for multi-target tracking,” in 2017 3rd IEEE International Conference on Computer and Communications (ICCC).   IEEE, 2017, pp. 1725–1730.
  10. W. Dai, J. Tao, X. Yan, Z. Feng, and J. Chen, “Addressing unintended bias in toxicity detection: An lstm and attention-based approach,” in 2023 5th International Conference on Artificial Intelligence and Computer Applications (ICAICA), 2023, pp. 375–379.
  11. H. Wang, Y. Zhou, E. Perez, and F. Roemer, “Jointly learning selection matrices for transmitters, receivers and fourier coefficients in multichannel imaging,” arXiv preprint arXiv:2402.19023, 2024.
  12. Y. Li, W. Wang, X. Yan, M. Gao, and M. Xiao, “Research on the application of semantic network in disease diagnosis prompts based on medical corpus,” International Journal of Innovative Research in Computer Science & Technology, vol. 12, no. 2, pp. 1–9, 2024.
  13. J. Tian, A. Xiang, Y. Feng, Q. Yang, and H. Liu, “Enhancing disease prediction with a hybrid cnn-lstm framework in ehrs,” Journal of Theory and Practice of Engineering Science, vol. 4, no. 02, p. 8–14, Feb. 2024. [Online]. Available: https://centuryscipub.com/index.php/jtpes/article/view/489
  14. Z. Zou and A. Dutta, “Multidimensional eigenwave multiplexing modulation for non-stationary channels,” in GLOBECOM 2023-2023 IEEE Global Communications Conference.   IEEE, 2023, pp. 2524–2529.
  15. H. Zang, S. Li, X. Dong, D. Ma, and B. Dang, “Evaluating the social impact of ai in manufacturing: A methodological framework for ethical production,” Academic Journal of Sociology and Management, vol. 2, no. 1, pp. 21–25, 2024.
  16. H. Zang, “Precision calibration of industrial 3d scanners: An ai-enhanced approach for improved measurement accuracy,” Global Academic Frontiers, vol. 2, no. 1, pp. 27–37, 2024.
  17. Z. Jiang, G. Song, Y. Qian, and Y. Wang, “A deep learning framework for detecting and localizing abnormal pedestrian behaviors at grade crossings,” Neural Computing and Applications, vol. 34, no. 24, pp. 22 099–22 113, 2022.
  18. G. Song, S. H. Hong, T. Kyzer, and Y. Wang, “An energy consumption auditing anomaly detection system of robotic manipulators based on a generative adversarial network,” in Annual Conference of the PHM Society, vol. 15, no. 1, 2023.
  19. X. Wei, D. Ma, J. Ou, G. Song, J. Guo, J. W. Robertson, Y. Wang, Q. Wang, and C. Liu, “Narrowing signal distribution by adamantane derivatization for amino acid identification using an α𝛼\alphaitalic_α-hemolysin nanopore,” Nano Letters, 2024.
  20. G. Song, Y. Qian, and Y. Wang, “Analysis of abnormal pedestrian behaviors at grade crossings based on semi-supervised generative adversarial networks,” Applied Intelligence, pp. 1–16, 2023.
  21. L. Wang, J. A. Sahel, and S. Pi, “Sub2full: split spectrum to boost oct despeckling without clean data,” arXiv preprint arXiv:2401.10128, 2024.
  22. L. Wang, Z. Chen, Z. Zhu, X. Yu, and J. Mo, “Compressive-sensing swept-source optical coherence tomography angiography with reduced noise,” Journal of Biophotonics, vol. 15, no. 8, p. e202200087, 2022.
  23. Z. Zou, M. Careem, A. Dutta, and N. Thawdar, “Joint spatio-temporal precoding for practical non-stationary wireless channels,” IEEE Transactions on Communications, vol. 71, no. 4, pp. 2396–2409, 2023.
  24. L. Wang, S. Chen, L. Liu, X. Yin, G. Shi, and J. Mo, “Axial super-resolution optical coherence tomography via complex-valued network,” Physics in Medicine & Biology, vol. 68, no. 23, p. 235016, 2023.
  25. Z. Chen, Q. Cheng, L. Wang, Y. Mo, K. Li, and J. Mo, “Optical coherence tomography for in vivo longitudinal monitoring of artificial dermal scaffold,” Lasers in Surgery and Medicine, vol. 55, no. 3, pp. 316–326, 2023.
  26. Z. Zou and A. Dutta, “Capacity achieving by diagonal permutation for mu-mimo channels,” in GLOBECOM 2023-2023 IEEE Global Communications Conference.   IEEE, 2023, pp. 2536–2541.
  27. G. Song, Y. Qian, and Y. Wang, “A deep generative adversarial network (gan)-enabled abnormal pedestrian behavior detection at grade crossings,” in SoutheastCon 2023.   IEEE, 2023, pp. 677–684.
  28. L. Gao, G. Cordova, C. Danielson, and R. Fierro, “Autonomous multi-robot servicing for spacecraft operation extension,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 10 729–10 735.
  29. D. Li, M. Rhu, D. R. Johnson, M. O’Connor, M. Erez, D. Burger, D. S. Fussell, and S. W. Redder, “Priority-based cache allocation in throughput processors,” in High Performance Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on.   IEEE, 2015, pp. 89–100.
  30. Y. Zhou, A. Osman, M. Willms, A. Kunz, S. Philipp, J. Blatt, and S. Eul, “Semantic wireframe detection,” 2023.
Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.