Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Depreciation Cost is a Poor Proxy for Revenue Lost to Aging in Grid Storage Optimization (2403.10617v1)

Published 15 Mar 2024 in eess.SY, cs.SY, and math.OC

Abstract: Dispatch of a grid energy storage system for arbitrage is typically formulated into a rolling-horizon optimization problem that includes a battery aging model within the cost function. Quantifying degradation as a depreciation cost in the objective can increase overall profits by extending lifetime. However, depreciation is just a proxy metric for battery aging; it is used because simulating the entire system life is challenging due to computational complexity and the absence of decades of future data. In cases where the depreciation cost does not match the loss of possible future revenue, different optimal usage profiles result and this reduces overall profit significantly compared to the best case (e.g., by 30-50%). Representing battery degradation perfectly within the rolling-horizon optimization does not resolve this - in addition, the economic cost of degradation throughout life should be carefully considered. For energy arbitrage, optimal economic dispatch requires a trade-off between overuse, leading to high return rate but short lifetime, vs. underuse, leading to a long but not profitable life. We reveal the intuition behind selecting representative costs for the objective function, and propose a simple moving average filter method to estimate degradation cost. Results show that this better captures peak revenue, assuming reliable price forecasts are available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. P. Grunewald, M. Aunedi, S. M. Nosratabadi, T. Morstyn, I. Savelli, V. Kumtepeli, and D. Howey, “Taking the long view on short-run marginal emissions: how much carbon does flexibility and energy storage save?” Oxford Open Energy, vol. 2, p. oiad008, 2023.
  2. J. M. Reniers, G. Mulder, and D. A. Howey, “Unlocking extra value from grid batteries using advanced models,” Journal of Power Sources, vol. 487, p. 229355, 2021.
  3. V. Kumtepeli, Y. Zhao, M. Naumann, A. Tripathi, Y. Wang, A. Jossen, and H. Hesse, “Design and analysis of an aging-aware energy management system for islanded grids using mixed-integer quadratic programming,” International Journal of Energy Research, vol. 43, no. 9, pp. 4127–4147, 2019.
  4. H. C. Hesse, V. Kumtepeli, M. Schimpe, J. Reniers, D. A. Howey, A. Tripathi, Y. Wang, and A. Jossen, “Ageing and efficiency aware battery dispatch for arbitrage markets using mixed integer linear programming,” Energies, vol. 12, no. 6, p. 999, 2019.
  5. V. Kumtepeli, H. C. Hesse, M. Schimpe, A. Tripathi, Y. Wang, and A. Jossen, “Energy arbitrage optimization with battery storage: 3d-milp for electro-thermal performance and semi-empirical aging models,” IEEE Access, vol. 8, pp. 204 325–204 341, 2020.
  6. N. Collath, M. Cornejo, V. Engwerth, H. Hesse, and A. Jossen, “Increasing the lifetime profitability of battery energy storage systems through aging aware operation,” Applied Energy, vol. 348, p. 121531, 2023.
  7. A. V. Vykhodtsev, D. Jang, Q. Wang, W. Rosehart, and H. Zareipour, “Physics-aware degradation model of lithium-ion battery energy storage for techno-economic studies in power systems,” IEEE Transactions on Sustainable Energy, 2023.
  8. A. Aitio and D. A. Howey, “Predicting battery end of life from solar off-grid system field data using machine learning,” Joule, vol. 5, no. 12, pp. 3204–3220, 2021.
  9. J. M. Reniers, G. Mulder, S. Ober-Blöbaum, and D. A. Howey, “Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling,” Journal of Power Sources, vol. 379, pp. 91–102, 3 2018.
  10. V. Kumtepeli and D. A. Howey, “Understanding battery aging in grid energy storage systems,” Joule, vol. 6, no. 10, pp. 2250–2252, 2022.
  11. S. Englberger, A. Jossen, and H. Hesse, “Unlocking the potential of battery storage with the dynamic stacking of multiple applications,” Cell reports physical science, vol. 1, no. 11, 2020.
  12. S. Englberger, K. A. Gamra, B. Tepe, M. Schreiber, A. Jossen, and H. Hesse, “Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context,” Applied energy, vol. 304, p. 117862, 2021.
  13. H. C. Hesse, M. Schimpe, D. Kucevic, and A. Jossen, “Lithium-ion battery storage for the grid—a review of stationary battery storage system design tailored for applications in modern power grids,” Energies, vol. 10, no. 12, p. 2107, 2017.
  14. J. M. Reniers, G. Mulder, and D. A. Howey, “Review and Performance Comparison of Mechanical-Chemical Degradation Models for Lithium-Ion Batteries,” Journal of The Electrochemical Society, vol. 166, no. 14, pp. A3189–A3200, 2019.
  15. N. Collath, B. Tepe, S. Englberger, A. Jossen, and H. Hesse, “Aging aware operation of lithium-ion battery energy storage systems: A review,” Journal of Energy Storage, vol. 55, p. 105634, 2022.
  16. P. L. C. García-Miguel, J. Alonso-Martínez, S. Arnaltes Gómez, M. García Plaza, and A. P. Asensio, “A review on the degradation implementation for the operation of battery energy storage systems,” Batteries, vol. 8, no. 9, p. 110, 2022.
  17. F. Wankmüller, P. R. Thimmapuram, K. G. Gallagher, and A. Botterud, “Impact of battery degradation on energy arbitrage revenue of grid-level energy storage,” Journal of Energy Storage, vol. 10, pp. 56–66, 2017.
  18. G. He, Q. Chen, P. Moutis, S. Kar, and J. F. Whitacre, “An intertemporal decision framework for electrochemical energy storage management,” Nature Energy, vol. 3, no. 5, pp. 404–412, 2018.
  19. G. He, R. Ciez, P. Moutis, S. Kar, and J. F. Whitacre, “The economic end of life of electrochemical energy storage,” Applied Energy, vol. 273, p. 115151, 2020.
  20. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.
  21. A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting system for convex optimization problems,” Journal of Control and Decision, vol. 5, no. 1, pp. 42–60, 2018.
  22. Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023. [Online]. Available: https://www.gurobi.com
  23. R. Perriment, V. Kumtepeli, M. McCulloch, and D. Howey, “Lead-acid battery lifetime extension in solar home systems under different operating conditions,” in 2023 10th IEEE PES & IAS PowerAfrica Conference, 2023.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Volkan Kumtepeli (6 papers)
  2. Holger Hesse (2 papers)
  3. Thomas Morstyn (33 papers)
  4. Seyyed Mostafa Nosratabadi (3 papers)
  5. Marko Aunedi (5 papers)
  6. David A. Howey (41 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com