Studying Stabilizer de Finetti Theorems and Possible Applications in Quantum Information Processing (2403.10592v1)
Abstract: Symmetries are of fundamental interest in many areas of science. In quantum information theory, if a quantum state is invariant under permutations of its subsystems, it is a well-known and widely used result that its marginal can be approximated by a mixture of tensor powers of a state on a single subsystem. Applications of this quantum de Finetti theorem range from quantum key distribution (QKD) to quantum state tomography and numerical separability tests. Recently, it has been discovered by Gross, Nezami and Walter that a similar observation can be made for a larger symmetry group than permutations: states that are invariant under stochastic orthogonal symmetry are approximated by tensor powers of stabilizer states, with an exponentially smaller overhead than previously possible. This naturally raises the question if similar improvements could be found for applications where this symmetry appears (or can be enforced). Here, two such examples are investigated.
- M. Christandl, R. König, and R. Renner, “Postselection Technique for Quantum Channels with Applications to Quantum Cryptography,” Phys. Rev. Lett. 102, 020504 (2009).
- S. Nahar, D. Tupkary, Y. Zhao, N. Lütkenhaus, and E. Tan, “Postselection technique for optical QKD with improved de Finetti reductions,” 2024. In preparation.
- R. Renner, Security of Quantum Key Distribution. PhD thesis, ETH, Dec, 2005. arXiv:1712.08628 [quant-ph].
- R. Renner, “Symmetry of large physical systems implies independence of subsystems,” Nature Physics 3, 645–649 (2007), arXiv:quant-ph/0703069 [quant-ph].
- R. König and G. Mitchison, “A most compendious and facile quantum de Finetti theorem,” Journal of Mathematical Physics 50, 012105 (2009).
- M. Christandl, R. König, G. Mitchison, and R. Renner, “One-and-a-Half Quantum de Finetti Theorems,” Communications in Mathematical Physics 273, 473–498 (2007).
- M. Christandl and R. Renner, “Reliable Quantum State Tomography,” Phys. Rev. Lett. 109, 120403 (2012).
- Chapman and Hall/CRC, 2005.
- A. Leverrier, “Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction,” Phys. Rev. Lett. 118, 200501 (2017), arXiv:1701.03393 [quant-ph].
- D. Gross, S. Nezami, and M. Walter, “Schur-Weyl Duality for the Clifford Group with Applications: Property Testing, a Robust Hudson Theorem, and de Finetti Representations,” arXiv e-prints arXiv:1712.08628 (2017), arXiv:1712.08628 [quant-ph].
- A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, “Distinguishing Separable and Entangled States,” Phys. Rev. Lett. 88, 187904 (2002).
- A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, “Complete family of separability criteria,” Phys. Rev. A 69, 022308 (2004).
- M. Berta, F. Borderi, O. Fawzi, and V. Scholz, “Semidefinite programming hierarchies for quantum error correction,” arXiv e-prints arXiv:1810.12197 (2018), arXiv:1810.12197 [quant-ph].
- S. Barman and O. Fawzi, “Algorithmic Aspects of Optimal Channel Coding,” IEEE Transactions on Information Theory 64, 1038–1045 (2018).
- F. Pastawski, A. Kay, N. Schuch, and I. Cirac, “Limitations of Passive Protection of Quantum Information,” 2009.
- D. Leung and W. Matthews, “On the Power of PPT-Preserving and Non-Signalling Codes,” IEEE Transactions on Information Theory 61, 4486–4499 (2015).
- A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
- W. Fulton and J. Harris, Representation Theory: A First Course. Springer, 2004.
- M. Hayashi and K. Matsumoto, “Simple construction of quantum universal variable-length source coding,” IEEE International Symposium on Information Theory, 2003. Proceedings. 459– (2002).
- M. Christandl and G. Mitchison, “The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group,” Communications in Mathematical Physics 261, 789–797 (2005).
- A. W. Harrow, “Applications of coherent classical communication and the Schur transform to quantum information theory,” 2005. https://arxiv.org/abs/quant-ph/0512255v1.
- D. Gottesman, “Stabilizer Codes and Quantum Error Correction,” 1997.
- R. Blume-Kohout, “Optimal, reliable estimation of quantum states,” New Journal of Physics 12, 043034 (2010).
- N. Friis, G. Vitagliano, M. Malik, and M. Huber, “Entanglement certification from theory to experiment,” Nature Reviews Physics 1, 72–87 (2018).
- B. de Finetti, “Funzione caratteristica di un fenomeno aleatorio,” Atti del Congresso Ingernazionale dei Matematici 179–190 (1928). http://www.brunodefinetti.it/Opere/funzioniCaratteristiche.pdf.
- B. de Finetti, “La prévision : ses lois logiques, ses sources subjectives,” Annales de l’institut Henri Poincaré 7, 1–68 (1937). http://www.numdam.org/item/AIHP_1937__7_1_1_0.
- D. Alvarez-Melis and T. Broderick, “A translation of ”The characteristic function of a random phenomenon” by Bruno de Finetti,” 2015. https://arxiv.org/abs/1512.01229.
- D. M. Cifarelli and E. Regazzini, “De Finetti’s contribution to probability and statistics,” Statist. Sci. 11, 253–282 (1996).
- R. L. Hudson and G. R. Moody, “Locally normal symmetric states and an analogue of de Finetti’s theorem,” Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 33, 343–351 (1976).
- C. M. Caves, C. A. Fuchs, and R. Schack, “Unknown quantum states: The quantum de Finetti representation,” Journal of Mathematical Physics 43, 4537–4559 (2002).
- M. Berta, M. Christandl, and R. Renner, “The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory,” Communications in Mathematical Physics 306, 579–615 (2011).
- M. Navascués, M. Owari, and M. B. Plenio, “Power of symmetric extensions for entanglement detection,” Phys. Rev. A 80, 052306 (2009).
- F. G. S. L. Brandão and A. W. Harrow, “Quantum de Finetti Theorems Under Local Measurements with Applications,” Communications in Mathematical Physics 353, 469–506 (2017).
- A. Leverrier and N. J. Cerf, “Quantum de Finetti theorem in phase-space representation,” Phys. Rev. A 80, 010102 (2009).
- A. Leverrier, “SU(p,q)𝑆𝑈𝑝𝑞SU(p,q)italic_S italic_U ( italic_p , italic_q ) coherent states and a Gaussian de Finetti theorem,” arXiv e-prints arXiv:1612.05080 (2016), arXiv:1612.05080 [quant-ph].
- T. Banica, S. Curran, and R. Speicher, “De Finetti theorems for easy quantum groups,” The Annals of Probability 40, 401–435 (2012).
- A. Y. Kitaev, “Quantum computations: algorithms and error correction,” Russian Math. Surveys 52, 1191–1249 (1997).
- M. Hayashi, “Practical evaluation of security for quantum key distribution,” Phys. Rev. A 74, 022307 (2006).
- V. Scarani and R. Renner, “Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing,” Phys. Rev. Lett. 100, 200501 (2008).
- R. Duan, S. Severini, and A. Winter, “On Zero-Error Communication via Quantum Channels in the Presence of Noiseless Feedback,” IEEE Transactions on Information Theory 62, 5260–5277 (2016).
- Z. Cao, H. Zhou, and X. Ma, “Loss-tolerant measurement-device-independent quantum random number generation,” New Journal of Physics 17, 125011 (2015).
- O. Fawzi and R. Renner, “Quantum Conditional Mutual Information and Approximate Markov Chains,” Communications in Mathematical Physics 340, 575–611 (2015).
- A. Perelomov, Generalized Coherent States and Their Applications. Springer, 1986.
- M. Epping, H. Kampermann, C. Macchiavello, and D. Bruß, “Multi-partite entanglement can speed up quantum key distribution in networks,” New Journal of Physics 19, 093012 (2017).
- F. Grasselli, H. Kampermann, and D. Bruß, “Finite-key effects in multipartite quantum key distribution protocols,” New Journal of Physics 20, 113014 (2018).
- M. Tomamichel and A. Leverrier, “A largely self-contained and complete security proof for quantum key distribution,” Quantum 1, 14 (2017).
- R. König, R. Renner, and C. Schaffner, “The Operational Meaning of Min- and Max-Entropy,” IEEE Transactions on Information Theory 55, 4337–4347 (2009).
- M. Tomamichel, Quantum Information Processing with Finite Resources. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21891-5.
- M. Wilde, “Lecture 3: Mixed quantum states and channels,” 2012. https://www.dias.ie/wp-content/uploads/2012/06/lecture-3-wilde.pdf.
- E. Magesan, Gaining Information About a Quantum Channel Via Twirling. Master’s thesis, University of Waterloo, 2008. https://uwspace.uwaterloo.ca/bitstream/handle/10012/3828/uw-ethesis.pdf?sequence=1.
- C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Physical Review A 54, 3824–3851 (1996).
- E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Randomized benchmarking of quantum gates,” Phys. Rev. A 77, 012307 (2008). https://link.aps.org/doi/10.1103/PhysRevA.77.012307.
- Z. Cai and S. C. Benjamin, “Constructing Smaller Pauli Twirling Sets for Arbitrary Error Channels,” Scientific Reports 9, 11281 (2019). https://doi.org/10.1038/s41598-019-46722-7.
- E. Witt, “Theorie der quadratischen Formen in beliebigen Körpern,” Journal für die reine und angewandte Mathematik 176, 31–44 (1937). https://www.maths.ed.ac.uk/~v1ranick/papers/wittform.pdf.
- B. Bolt, T. G. Room, and G. E. Wall, “On the Clifford collineation, transform and similarity groups. I.,” Journal of the Australian Mathematical Society 2, 60–79 (1961).
- F. M. Mora, Non-Classicality in Qubit Phase Space. Master’s thesis, University of Cologne, 2017.
- W. Feller, An Introduction to Probability Theory and Its Applications. Wiley, 1991. https://tocs.ub.uni-mainz.de/pdfs/010747699.pdf.
- M. Mertz, H. Kampermann, S. Bratzik, and D. Bruß, “Secret key rates for coherent attacks,” Phys. Rev. A 87, 012315 (2013). https://link.aps.org/doi/10.1103/PhysRevA.87.012315.
- A. Leverrier, E. Karpov, P. Grangier, and N. J. Cerf, “Security of continuous-variable quantum key distribution: towards a de Finetti theorem for rotation symmetry in phase space,” New Journal of Physics 11, 115009 (2009).
- M. Hayashi, “Information Spectrum Approach to Second-Order Coding Rate in Channel Coding,” IEEE Transactions on Information Theory 55, 4947–4966 (2009).
- Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel Coding Rate in the Finite Blocklength Regime,” Information Theory, IEEE Transactions on 56, 2307 – 2359 (2010).
- M. Reimpell and R. Werner, “Iterative Optimization of Quantum Error Correcting Codes,” Physical Review Letters 94, 080501 (2005).
- M. Tomamichel, M. Berta, and J. M. Renes, “Quantum coding with finite resources,” Nature Communications 7, 11419 (2016). https://doi.org/10.1038/ncomms11419.
- X. Wang and R. Duan, “A semidefinite programming upper bound of quantum capacity,” in 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1690–1694. 2016.
- X. Wang, K. Fang, and R. Duan, “Semidefinite Programming Converse Bounds for Quantum Communication,” IEEE Transactions on Information Theory 65, 2583–2592 (2019).
- E. Kaur, S. Das, M. M. Wilde, and A. Winter, “Extendibility Limits the Performance of Quantum Processors,” Phys. Rev. Lett. 123, 070502 (2019). https://link.aps.org/doi/10.1103/PhysRevLett.123.070502.
- J. B. Lasserre, “Global Optimization with Polynomials and the Problem of Moments,” SIAM Journal on Optimization 11, 796–817 (2001).
- P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems,” Mathematical Programming 96, 293–320 (2003).
- M. Heinrich and D. Gross, “Robustness of Magic and Symmetries of the Stabiliser Polytope,” Quantum 3, 132 (2019).
- L. Sheridan, T. P. Le, and V. Scarani, “Finite-key security against coherent attacks in quantum key distribution,” New Journal of Physics 12, 123019 (2010).
- L. Sheridan and V. Scarani, “Security proof for quantum key distribution using qudit systems,” Phys. Rev. A 82, 030301 (2010). https://link.aps.org/doi/10.1103/PhysRevA.82.030301.
- M. Koashi, “Unconditional security of quantum key distribution and the uncertainty principle,” Journal of Physics: Conference Series 36, 98–102 (2006).
- F. G. S. L. Brandão and A. W. Harrow, “Product-state Approximations to Quantum Ground States,” arXiv e-prints arXiv:1310.0017 (2013), arXiv:1310.0017 [quant-ph].