Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hearing-Loss Compensation Using Deep Neural Networks: A Framework and Results From a Listening Test (2403.10420v3)

Published 15 Mar 2024 in eess.AS

Abstract: This article investigates the use of deep neural networks (DNNs) for hearing-loss compensation. Hearing loss is a prevalent issue affecting millions of people worldwide, and conventional hearing aids have limitations in providing satisfactory compensation. DNNs have shown remarkable performance in various auditory tasks, including speech recognition, speaker identification, and music classification. In this study, we propose a DNN-based approach for hearing-loss compensation, which is trained on the outputs of hearing-impaired and normal-hearing DNN-based auditory models in response to speech signals. First, we introduce a framework for emulating auditory models using DNNs, focusing on an auditory-nerve model in the auditory pathway. We propose a linearization of the DNN-based approach, which we use to analyze the DNN-based hearing-loss compensation. Additionally we develop a simple approach to choose the acoustic center frequencies of the auditory model used for the compensation strategy. Finally, we evaluate, to our knowledge for the first time, the DNN-based hearing-loss compensation strategies using listening tests with hearing impaired listeners. The results demonstrate that the proposed approach results in feasible hearing-loss compensation strategies. Our proposed approach was shown to provide an increase in speech intelligibility versus an unprocessed baseline and was found to outperform a conventional approach in terms of both intelligibility and preference.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Rasiah and Sulakshan, “Addressing the rising prevalence of hearing loss,” World Health Organization, 2018.
  2. P. Leer, J. Jensen, Z.-H. Tan, J. Østergaard, and L. Bramsløw, “How to train your ears: Auditory-model emulation for large-dynamic-range inputs and mild-to-severe hearing losses,” In press.
  3. E. Biondi, “Auditory processing of speech and its implications with respect to prosthetic rehabilitation. The bioengineering viewpoint,” International Journal of Audiology, vol. 17, no. 1, pp. 43–50, 1978.
  4. J. Bondy, S. Becker, I. Bruce, L. Trainor, and S. Haykin, “A novel signal-processing strategy for hearing-aid design: Neurocompensation,” Signal Processing, vol. 84, no. 7, pp. 1239–1253, 2004.
  5. Z. Chen, S. Becker, J. Bondy, I. C. Bruce, and S. Haykin, “A Novel Model-Based Hearing Compensation Design Using a Gradient-Free Optimization Method,” Neural Computation, vol. 17, no. 12, pp. 2648–2671, 12 2005. [Online]. Available: https://dx.doi.org/10.1162/089976605774320575
  6. P. v. Hengel, “Simulating hearing loss with a transmission-line model for the optimization of hearing aids,” Proceedings of the International Symposium on Auditory and Audiological Research, vol. 5, pp. 181–188, 12 2015. [Online]. Available: https://proceedings.isaar.eu/index.php/isaarproc/article/view/2015-21
  7. F. Drakopoulos and S. Verhulst, “A Neural-Network Framework for the Design of Individualised Hearing-Loss Compensation,” IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 31, pp. 2395–2409, 2023.
  8. C. V. Palmer and G. A. Lindley Iv, “Overview And Rationale For Prescriptive Formulas for Linear and Non-Linear Hearing Aids,” in Strategies for Selecting and Verifying Hearing Aid Fittings., P. Michael Valente, Ed.   Thieme Medical Publishers, 2002, pp. 1–22. [Online]. Available: https://web.thieme.com/media/samples/pubid1013629716/
  9. D. Byrne and H. Dillon, “The National Acoustic Laboratories’ (NAL) new procedure for selecting the gain and frequency response of a hearing aid,” Ear and hearing, vol. 7, no. 4, pp. 257–265, 1986. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/3743918/
  10. G. A. Lindley IV and C. V. Palmer, “Fitting Wide Dynamic Range Compression Hearing Aids,” American Journal of Audiology, vol. 6, no. 3, pp. 19–28, 1997. [Online]. Available: https://pubs.asha.org/doi/10.1044/1059-0889.0603.19
  11. N. Le Goff, “Amplifying soft sounds-a personal matter,” 2014. [Online]. Available: https://www.oticon.global/professionals/audiology-and-technology/technologies/research
  12. T. Schneider and R. Brennan, “Multichannel compression strategy for a digital hearing aid,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 1, pp. 411–414, 1997.
  13. J. M. Kates and K. H. Arehart, “Multichannel dynamic-range compression using digital frequency warping,” Eurasip Journal on Applied Signal Processing, vol. 2005, no. 18, pp. 3003–3014, 2005. [Online]. Available: https://www.researchgate.net/publication/26532062_Multichannel_Dynamic-Range_Compression_Using_Digital_Frequency_Warping
  14. M. S. A. Zilany, I. C. Bruce, and L. H. Carney, “Updated parameters and expanded simulation options for a model of the auditory periphery,” The Journal of the Acoustical Society of America, 2014.
  15. S. Verhulst, A. Altoè, and V. Vasilkov, “Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss,” Hearing Research, vol. 360, pp. 55–75, 2018.
  16. “Auditory Models - Publications - Carney Lab - University of Rochester Medical Center.” [Online]. Available: https://www.urmc.rochester.edu/labs/carney/publications-code/auditory-models.aspx
  17. M. S. A. Zilany, I. C. Bruce, P. C. Nelson, and L. H. Carney, “A phenomenological model of the synapse between the inner hair cell and auditory nerve: Long-term adaptation with power-law dynamics,” The Journal of the Acoustical Society of America, vol. 126, no. 5, pp. 2390–2412, 11 2009. [Online]. Available: https://www.researchgate.net/publication/38072230_A_phenomenological_model_of_the_synapse_between_the_inner_hair_cell_and_auditory_nerve_Long-term_adaptation_with_power-law_dynamics
  18. “GitHub - HearingTechnology/CoNNear_cochlea.” [Online]. Available: https://github.com/HearingTechnology/CoNNear_cochlea
  19. H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and Y. Wu, “LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech,” Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, vol. 2019-September, pp. 1526–1530, 4 2019. [Online]. Available: https://arxiv.org/abs/1904.02882v1
  20. N. Rahaman, A. Baratin, D. Arpit, F. Draxlcr, M. Lin, F. A. Hamprecht, Y. Bengio, and A. Courville, “On the Spectral Bias of Neural Networks,” 36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 9230–9239, 6 2018. [Online]. Available: https://arxiv.org/abs/1806.08734v3
  21. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2015 Inter, pp. 1026–1034, 2015.
  22. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1 1989.
  23. P. D. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra,” IEEE Transactions on audio and electroacoustics, no. 2, pp. 70–73, 1967.
  24. F. Drakopoulos, A. Van Den Broucke, and S. Verhulst, “A DNN-Based Hearing-Aid Strategy For Real-Time Processing: One Size Fits All,” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, pp. 1–5, 5 2023.
  25. N. Bisgaard, M. S. Vlaming, and M. Dahlquist, “Standard Audiograms for the IEC 60118-15 Measurement Procedure,” Trends in Amplification, vol. 14, no. 2, pp. 113–120, 2010. [Online]. Available: http://tia.sagepub.com
  26. D. Stoller, S. Ewert, and S. Dixon, “Wave-U-Net: A multi-scale neural network for end-to-end audio source separation,” Proceedings of the 19th International Society for Music Information Retrieval Conference, ISMIR 2018, pp. 334–340, 2018.
  27. Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation,” IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 27, no. 8, pp. 1256–1266, 9 2018. [Online]. Available: http://arxiv.org/abs/1809.07454http://dx.doi.org/10.1109/TASLP.2019.2915167
  28. E. Tzinis, Z. Wang, and P. Smaragdis, “Sudo rm -rf: Efficient Networks for Universal Audio Source Separation,” IEEE International Workshop on Machine Learning for Signal Processing, MLSP, vol. 2020-September, 7 2020. [Online]. Available: http://arxiv.org/abs/2007.06833http://dx.doi.org/10.1109/MLSP49062.2020.9231900
  29. M. Kolbaek, Z. H. Tan, S. H. Jensen, and J. Jensen, “On Loss Functions for Supervised Monaural Time-Domain Speech Enhancement,” IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 28, pp. 825–838, 2020.
  30. J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “SDR - half-baked or well done?” ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, vol. 2019-May, pp. 626–630, 11 2018. [Online]. Available: https://arxiv.org/abs/1811.02508v1
  31. J. B. Nielsen and T. Dau, “The Danish hearing in noise test,” International Journal of Audiology, vol. 50, no. 3, pp. 202–208, 3 2011. [Online]. Available: https://www.tandfonline.com/doi/abs/10.3109/14992027.2010.524254
  32. I. Radiocommunication Sector, “Method for the subjective assessment of intermediate quality level of audio systems BS Series Broadcasting service (sound),” 2015. [Online]. Available: http://www.itu.int/ITU-R/go/patents/en
  33. G. Keidser, H. Dillon, M. Flax, T. Ching, and S. Brewer, “The NAL-NL2 Prescription Procedure,” Audiology Research, vol. 1, no. 1, 2011.
  34. P. Gonzalez, T. S. Alstrøm, and T. May, “Assessing the Generalization Gap of Learning-Based Speech Enhancement Systems in Noisy and Reverberant Environments,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023.
Citations (1)

Summary

We haven't generated a summary for this paper yet.