Optimizing post-Newtonian parameters and fixing the BMS frame for numerical-relativity waveform hybridizations (2403.10278v2)
Abstract: Numerical relativity (NR) simulations of binary black holes provide precise waveforms, but are typically too computationally expensive to produce waveforms with enough orbits to cover the whole frequency band of gravitational-wave observatories. Accordingly, it is important to be able to hybridize NR waveforms with analytic, post-Newtonian (PN) waveforms, which are accurate during the early inspiral phase. We show that to build such hybrids, it is crucial to both fix the Bondi-Metzner-Sachs (BMS) frame of the NR waveforms to match that of PN theory, and optimize over the PN parameters. We test such a hybridization procedure including all spin-weighted spherical harmonic modes with $|m|\leq \ell$ for $\ell\leq 8$, using 29 NR waveforms with mass ratios $q\leq 10$ and spin magnitudes $|\chi_1|, |\chi_2|\leq 0.8$. We find that for spin-aligned systems, the PN and NR waveforms agree very well. The difference is limited by the small nonzero orbital eccentricity of the NR waveforms, or equivalently by the lack of eccentric terms in the PN waveforms. To maintain full accuracy of the simulations, the matching window for spin-aligned systems should be at least 5 orbits long and end at least 15 orbits before merger. For precessing systems, the errors are larger than for spin-aligned cases. The errors are likely limited by the absence of precession-related spin-spin PN terms. Using $105\,M$ long NR waveforms, we find that there is no optimal choice of the matching window within this time span, because the hybridization result for precessing cases is always better if using earlier or longer matching windows. We provide the mean orbital frequency of the smallest acceptable matching window as a function of the target error between the PN and NR waveforms and the black hole spins.
- B. P. Abbott et al. (LIGO Scientific, Virgo), GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, Phys. Rev. Lett. 116, 131103 (2016a), arXiv:1602.03838 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Binary Black Hole Mergers in the first Advanced LIGO Observing Run, Phys. Rev. X6, 041015 (2016b), [erratum: Phys. Rev.X8,no.3,039903(2018)], arXiv:1606.04856 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), GW150914: First results from the search for binary black hole coalescence with Advanced LIGO, Phys. Rev. D93, 122003 (2016c), arXiv:1602.03839 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Properties of the Binary Black Hole Merger GW150914, Phys. Rev. Lett. 116, 241102 (2016d), arXiv:1602.03840 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119, 161101 (2017), arXiv:1710.05832 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo, Astrophys. J. Lett. 882, L24 (2019a), arXiv:1811.12940 [astro-ph.HE] .
- R. Abbott et al. (LIGO Scientific, Virgo), GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses, Phys. Rev. D 102, 043015 (2020), arXiv:2004.08342 [astro-ph.HE] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Tests of general relativity with GW150914, Phys. Rev. Lett. 116, 221101 (2016e), [Erratum: Phys. Rev. Lett.121,no.12,129902(2018)], arXiv:1602.03841 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1, Phys. Rev. D100, 104036 (2019b), arXiv:1903.04467 [gr-qc] .
- J. Aasi et al. (LIGO Scientific), Advanced LIGO, Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys. Rev. X9, 031040 (2019c), arXiv:1811.12907 [astro-ph.HE] .
- F. Acernese et al. (Virgo), Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
- T. Akutsu et al. (KAGRA), KAGRA: 2.5 Generation Interferometric Gravitational Wave Detector, Nature Astron. 3, 35 (2019), arXiv:1811.08079 [gr-qc] .
- D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO, Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM] .
- P. Amaro-Seoane et al., eLISA/NGO: Astrophysics and cosmology in the gravitational-wave millihertz regime, GW Notes 6, 4 (2013), arXiv:1201.3621 [astro-ph.CO] .
- J. Luo et al. (TianQin), TianQin: a space-borne gravitational wave detector, Class. Quant. Grav. 33, 035010 (2016), arXiv:1512.02076 [astro-ph.IM] .
- W.-R. Hu and Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity, Natl. Sci. Rev. 4, 685 (2017).
- M. Maggiore et al., Science Case for the Einstein Telescope, JCAP 03, 050, arXiv:1912.02622 [astro-ph.CO] .
- P. Amaro-Seoane et al., Low-frequency gravitational-wave science with eLISA/NGO, Class. Quant. Grav. 29, 124016 (2012), arXiv:1202.0839 [gr-qc] .
- L. Santamaria et al., Matching post-Newtonian and numerical relativity waveforms: systematic errors and a new phenomenological model for non-precessing black hole binaries, Phys. Rev. D 82, 064016 (2010), arXiv:1005.3306 [gr-qc] .
- M. Boyle, Uncertainty in hybrid gravitational waveforms: Optimizing initial orbital frequencies for binary black-hole simulations, Phys. Rev. D84, 064013 (2011), arXiv:1103.5088 [gr-qc] .
- K. Mitman et al., Fixing the BMS frame of numerical relativity waveforms with BMS charges, Phys. Rev. D 106, 084029 (2022), arXiv:2208.04356 [gr-qc] .
- L. Ma and J. Fuller, Tidal Spin-up of Black Hole Progenitor Stars, Astrophys. J. 952, 53 (2023), arXiv:2305.08356 [astro-ph.HE] .
- V. Tiwari, S. Fairhurst, and M. Hannam, Constraining black-hole spins with gravitational wave observations, Astrophys. J. 868, 140 (2018), arXiv:1809.01401 [gr-qc] .
- J. Winicour, Characteristic Evolution and Matching, Living Rev. Rel. 12, 3 (2009), arXiv:0810.1903 [gr-qc] .
- M. C. Babiuc, J. Winicour, and Y. Zlochower, Binary Black Hole Waveform Extraction at Null Infinity, Class. Quant. Grav. 28, 134006 (2011), arXiv:1106.4841 [gr-qc] .
- J. Moxon, M. A. Scheel, and S. A. Teukolsky, Improved Cauchy-characteristic evolution system for high-precision numerical relativity waveforms, Phys. Rev. D 102, 044052 (2020), arXiv:2007.01339 [gr-qc] .
- M. Boyle and A. H. Mroue, Extrapolating gravitational-wave data from numerical simulations, Phys. Rev. D80, 124045 (2009), arXiv:0905.3177 [gr-qc] .
- SXS Collaboration, The SXS collaboration catalog of gravitational waveforms, http://www.black-holes.org/waveforms.
- J. Sadiq et al., Hybrid waveforms for generic precessing binaries for gravitational-wave data analysis, Physical Review D 102, 10.1103/physrevd.102.024012 (2020b).
- D. Sun, Nrpnhybridization, https://github.com/dongzesun/NRPNHybridization.
- L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Rel. 17, 2 (2014), arXiv:1310.1528 [gr-qc] .
- R. Fujita, Gravitational Waves from a Particle in Circular Orbits around a Schwarzschild Black Hole to the 22nd Post-Newtonian Order, Prog. Theor. Phys. 128, 971 (2012), arXiv:1211.5535 [gr-qc] .
- S. Marsat, Cubic order spin effects in the dynamics and gravitational wave energy flux of compact object binaries, Class. Quant. Grav. 32, 085008 (2015), arXiv:1411.4118 [gr-qc] .
- G. Faye, L. Blanchet, and B. R. Iyer, Non-linear multipole interactions and gravitational-wave octupole modes for inspiralling compact binaries to third-and-a-half post-Newtonian order, Class. Quant. Grav. 32, 045016 (2015), arXiv:1409.3546 [gr-qc] .
- O. M. Moreschi, Supercenter of Mass System at Future Null Infinity, Class. Quant. Grav. 5, 423 (1988).
- H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Gravitational waves in general relativity. 7. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A269, 21 (1962).
- R. K. Sachs, Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times, Proc. Roy. Soc. Lond. A270, 103 (1962a).
- R. Sachs, Asymptotic symmetries in gravitational theory, Phys. Rev. 128, 2851 (1962b).
- M. Boyle, Transformations of asymptotic gravitational-wave data, Phys. Rev. D93, 084031 (2016a), arXiv:1509.00862 [gr-qc] .
- K. Mitman et al., Fixing the BMS frame of numerical relativity waveforms, Phys. Rev. D 104, 024051 (2021), arXiv:2105.02300 [gr-qc] .
- E. T. Newman and R. Penrose, Note on the Bondi-Metzner-Sachs group, J. Math. Phys. 7, 863 (1966).
- M. Boyle, How should spin-weighted spherical functions be defined?, J. Math. Phys. 57, 092504 (2016b), arXiv:1604.08140 [gr-qc] .
- The Spectral Einstein Code, http://www.black-holes.org/SpEC.html.
- P. Schmidt, F. Ohme, and M. Hannam, Towards models of gravitational waveforms from generic binaries II: Modelling precession effects with a single effective precession parameter, Phys. Rev. D 91, 024043 (2015), arXiv:1408.1810 [gr-qc] .
- M. Boyle et al., The SXS Collaboration catalog of binary black hole simulations, Class. Quant. Grav. 36, 195006 (2019), arXiv:1904.04831 [gr-qc] .
- M. Boyle, Angular velocity of gravitational radiation from precessing binaries and the corotating frame, Phys. Rev. D87, 104006 (2013), arXiv:1302.2919 [gr-qc] .
- C. J. Woodford, M. Boyle, and H. P. Pfeiffer, Compact Binary Waveform Center-of-Mass Corrections, Phys. Rev. D 100, 124010 (2019), arXiv:1904.04842 [gr-qc] .