Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-density parity-check representation of fault-tolerant quantum circuits (2403.10268v2)

Published 15 Mar 2024 in quant-ph

Abstract: In fault-tolerant quantum computing, quantum algorithms are implemented through quantum circuits capable of error correction. These circuits are typically constructed based on specific quantum error correction codes, with consideration given to the characteristics of the underlying physical platforms. Optimising these circuits within the constraints of today's quantum computing technologies, particularly in terms of error rates, qubit counts, and network topologies, holds substantial implications for the feasibility of quantum applications in the near future. This paper presents a toolkit for designing and analysing fault-tolerant quantum circuits. We introduce a framework for representing stabiliser circuits using classical low-density parity-check (LDPC) codes. Each codeword in the representation corresponds to a quantum-mechanical equation regarding the circuit, formalising the correlations utilised in parity checks and delineating logical operations within the circuit. Consequently, the LDPC code provides a means of quantifying fault tolerance and verifying logical operations. We outline the procedure for generating LDPC codes from circuits using the Tanner graph notation, alongside proposing graph-theory tools for constructing fault-tolerant quantum circuits from classical LDPC codes. These findings offer a systematic approach to applying classical error correction techniques in optimising existing fault-tolerant protocols and developing new ones. As an example, we develop a resource-efficient scheme for universal fault-tolerant quantum computing on hypergraph product codes based on the LDPC representation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
  2. E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards fault-tolerant universal quantum computation, Nature 549, 172 (2017).
  3. J. Roffe, Quantum error correction: an introductory guide, Contemp. Phys. 60, 226 (2019).
  4. A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54, 1098 (1996).
  5. A. Steane, Multiple-particle interference and quantum error correction, Proc. R. Soc. Lond. A. 452, 2551 (1996a).
  6. A. Steane, Quantum reed-muller codes (1996b), arXiv:quant-ph/9608026 [quant-ph] .
  7. S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary (1998), arXiv:quant-ph/9811052 [quant-ph] .
  8. M. H. Freedman and D. A. Meyer, Projective plane and planar quantum codes (1998), arXiv:quant-ph/9810055 [quant-ph] .
  9. D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories, Phys. Rev. A 73, 012340 (2006).
  10. S. A. Aly, A. Klappenecker, and P. K. Sarvepalli, Subsystem codes (2006), arXiv:quant-ph/0610153 [quant-ph] .
  11. H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Phys. Rev. Lett. 97, 180501 (2006).
  12. H. Bombin and M. A. Martin-Delgado, Homological error correction: Classical and quantum codes, J. Math. Phys. 48, 10.1063/1.2731356 (2007).
  13. D. Gottesman, Fault-tolerant quantum computation with constant overhead (2014), arXiv:1310.2984 [quant-ph] .
  14. N. P. Breuckmann and J. N. Eberhardt, Quantum low-density parity-check codes, PRX Quantum 2, 040101 (2021a).
  15. J.-P. Tillich and G. Zemor, Quantum ldpc codes with positive rate and minimum distance proportional to the square root of the blocklength, IEEE Trans. Inf. Theory 60, 1193 (2014).
  16. A. A. Kovalev and L. P. Pryadko, Improved quantum hypergraph-product ldpc codes, in IEEE Int. Symp. Inf. Theory - Proc. (IEEE, 2012).
  17. A. A. Kovalev and L. P. Pryadko, Quantum kronecker sum-product low-density parity-check codes with finite rate, Phys. Rev. A 88, 012311 (2013).
  18. S. Bravyi and M. B. Hastings, Homological product codes (2013), arXiv:1311.0885 [quant-ph] .
  19. M. B. Hastings, Weight reduction for quantum codes (2016), arXiv:1611.03790 [quant-ph] .
  20. S. Evra, T. Kaufman, and G. Zémor, Decodable quantum ldpc codes beyond the n𝑛\sqrt{n}square-root start_ARG italic_n end_ARG distance barrier using high dimensional expanders (2020), arXiv:2004.07935 [quant-ph] .
  21. N. P. Breuckmann and J. N. Eberhardt, Balanced product quantum codes, IEEE Trans. Inf. Theory 67, 6653–6674 (2021b).
  22. P. Panteleev and G. Kalachev, Quantum ldpc codes with almost linear minimum distance, IEEE Trans. Inf. Theory 68, 213 (2022).
  23. P. W. Shor, Fault-tolerant quantum computation (1997), arXiv:quant-ph/9605011 [quant-ph] .
  24. J. Preskill, Fault-tolerant quantum computation (1997), arXiv:quant-ph/9712048 [quant-ph] .
  25. A. M. Steane, Efficient fault-tolerant quantum computing, Nature 399, 124 (1999).
  26. N. H. Nickerson, Y. Li, and S. C. Benjamin, Topological quantum computing with a very noisy network and local error rates approaching one percent, Nat. Commun. 4, 10.1038/ncomms2773 (2013).
  27. B. Zeng, A. Cross, and I. L. Chuang, Transversality versus universality for additive quantum codes (2007), arXiv:0706.1382 [quant-ph] .
  28. S. Bravyi and A. Kitaev, Universal quantum computation with ideal clifford gates and noisy ancillas, Phys. Rev. A 71, 022316 (2005).
  29. B. Eastin and E. Knill, Restrictions on transversal encoded quantum gate sets, Phys. Rev. Lett. 102, 110502 (2009).
  30. A. Paetznick and B. W. Reichardt, Universal fault-tolerant quantum computation with only transversal gates and error correction, Phys. Rev. Lett. 111, 090505 (2013).
  31. E. Knill, Quantum computing with realistically noisy devices, Nature 434, 39 (2005).
  32. R. Chao and B. W. Reichardt, Quantum error correction with only two extra qubits, Phys. Rev. Lett. 121, 050502 (2018).
  33. H. Bombin and M. A. Martin-Delgado, Quantum measurements and gates by code deformation, J. Phys. A 42, 095302 (2009).
  34. H. Bombin, Clifford gates by code deformation, New J. Phys. 13, 043005 (2011).
  35. R. Raussendorf, J. Harrington, and K. Goyal, A fault-tolerant one-way quantum computer, Ann. Phys. 321, 2242 (2006).
  36. R. Raussendorf, J. Harrington, and K. Goyal, Topological fault-tolerance in cluster state quantum computation, New J. Phys. 9, 199 (2007).
  37. A. G. Fowler, A. M. Stephens, and P. Groszkowski, High-threshold universal quantum computation on the surface code, Phys. Rev. A 80, 052312 (2009).
  38. H. Bombin, Topological order with a twist: Ising anyons from an abelian model, Phys. Rev. Lett. 105, 030403 (2010).
  39. M. B. Hastings and A. Geller, Reduced space-time and time costs using dislocation codes and arbitrary ancillas (2015), arXiv:1408.3379 [quant-ph] .
  40. T. J. Yoder and I. H. Kim, The surface code with a twist, Quantum 1, 2 (2017).
  41. D. Litinski, A game of surface codes: Large-scale quantum computing with lattice surgery, Quantum 3, 128 (2019).
  42. Y. Li, A magic state’s fidelity can be superior to the operations that created it, New J. Phys. 17, 023037 (2015).
  43. A. Krishna and D. Poulin, Fault-tolerant gates on hypergraph product codes, Phys. Rev. X 11, 011023 (2021).
  44. H. Yamasaki and M. Koashi, Time-efficient constant-space-overhead fault-tolerant quantum computation, Nat. Phys. 20, 247 (2024).
  45. N. Nickerson and H. Bombín, Measurement based fault tolerance beyond foliation (2018), arXiv:1810.09621 [quant-ph] .
  46. M. Newman, L. A. de Castro, and K. R. Brown, Generating fault-tolerant cluster states from crystal structures, Quantum 4, 295 (2020).
  47. B. J. Brown and S. Roberts, Universal fault-tolerant measurement-based quantum computation, Phys. Rev. Research 2, 033305 (2020).
  48. D. Gottesman, Opportunities and challenges in fault-tolerant quantum computation (2022), arXiv:2210.15844 [quant-ph] .
  49. N. Delfosse and A. Paetznick, Spacetime codes of clifford circuits (2023), arXiv:2304.05943 [quant-ph] .
  50. X. Fu and D. Gottesman, Error correction in dynamical codes (2024), arXiv:2403.04163 [quant-ph] .
  51. M. E. Beverland, S. Huang, and V. Kliuchnikov, Fault tolerance of stabilizer channels (2024), arXiv:2401.12017 [quant-ph] .
  52. N. de Beaudrap and D. Horsman, The zx calculus is a language for surface code lattice surgery, Quantum 4, 218 (2020).
  53. R. Tanner, A recursive approach to low complexity codes, IEEE Trans. Inf. Theory 27, 533 (1981).
  54. D. Gottesman, Stabilizer codes and quantum error correction (1997), arXiv:quant-ph/9705052 [quant-ph] .
  55. D. Gottesman, The heisenberg representation of quantum computers (1998), arXiv:quant-ph/9807006 [quant-ph] .

Summary

We haven't generated a summary for this paper yet.