Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disordered non-Fermi liquid fixed point for two-dimensional metals at Ising-nematic quantum critical points (2403.10148v2)

Published 15 Mar 2024 in cond-mat.str-el

Abstract: Understanding the influence of quenched random potential is crucial for comprehending the exotic electronic transport of non-Fermi liquid metals near metallic quantum critical points. In this study, we identify a stable fixed point governing the quantum critical behavior of two-dimensional non-Fermi liquid metals in the presence of a random potential disorder. By performing renormalization group analysis on a dimensional-regularized field theory for Ising-nematic quantum critical points, we systematically investigate the interplay between random potential disorder for electrons and Yukawa-type interactions between electrons and bosonic order-parameter fluctuations in a perturbative epsilon expansion. At the one-loop order, the effective field theory lacks stable fixed points, instead exhibiting a runaway flow toward infinite disorder strength. However, at the two-loop order, the effective field theory converges to a stable fixed point characterized by finite disorder strength, termed the "disordered non-Fermi liquid (DNFL) fixed point." Our investigation reveals that two-loop vertex corrections induced by Yukawa couplings are pivotal in the emergence of the DNFL fixed point, primarily through screening disorder scattering. Additionally, the DNFL fixed point is distinguished by a substantial anomalous scaling dimension of fermion fields, resulting in pseudogap-like behavior in the electron's density of states. These findings shed light on the quantum critical behavior of disordered non-Fermi liquid metals, emphasizing the indispensable role of higher-order loop corrections in such comprehension.

Summary

We haven't generated a summary for this paper yet.