Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparative Analysis of Programming by Demonstration Methods: Kinesthetic Teaching vs Human Demonstration (2403.10140v1)

Published 15 Mar 2024 in cs.RO

Abstract: Programming by demonstration (PbD) is a simple and efficient way to program robots without explicit robot programming. PbD enables unskilled operators to easily demonstrate and guide different robots to execute task. In this paper we present comparison of demonstration methods with comprehensive user study. Each participant had to demonstrate drawing simple pattern with human demonstration using virtual marker and kinesthetic teaching with robot manipulator. To evaluate differences between demonstration methods, we conducted user study with 24 participants which filled out NASA raw task load index (rTLX) and system usability scale (SUS). We also evaluated similarity of the executed trajectories to measure difference between demonstrated and ideal trajectory. We concluded study with finding that human demonstration using a virtual marker is on average 8 times faster, superior in terms of quality and imposes 2 times less overall workload than kinesthetic teaching.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. A. Grau, M. Indri, L. Lo Bello, and T. Sauter, “Robots in industry: The past, present, and future of a growing collaboration with humans,” IEEE Industrial Electronics Magazine, vol. 15, no. 1, pp. 50–61, 2021.
  2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
  3. G. Lentini, G. Grioli, M. G. Catalano, and A. Bicchi, “Robot programming without coding,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 7576–7582, 2020.
  4. H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent advances in robot learning from demonstration,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, no. 1, pp. 297–330, 2020.
  5. F. Zorić and M. Orsag, “H2ami: Intuitive human to aerial manipulator interface,” in 2023 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1226–1232, 2023.
  6. F. Zorić, A. Suarez, G. Vasiljević, M. Orsag, Z. Kovačić, and A. Ollero, “Performance comparison of teleoperation interfaces for ultra-lightweight anthropomorphic arms,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7026–7033, 2023.
  7. J. Zhang, Y. Wang, and R. Xiong, “Industrial robot programming by demonstration,” in 2016 International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 300–305, 2016.
  8. M. Tykal, A. Montebelli, and V. Kyrki, “Incrementally assisted kinesthetic teaching for programming by demonstration,” in 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 205–212, 2016.
  9. T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel, “Deep imitation learning for complex manipulation tasks from virtual reality teleoperation,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 5628–5635, 2018.
  10. S. Calinon, Robot Programming by Demonstration. Boca Raton, FL, USA: CRC Press, Inc., 1st ed., 2009.
  11. S. Scherzinger, A. Roennau, and R. Dillmann, “Contact skill imitation learning for robot-independent assembly programming,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4309–4316, Nov 2019.
  12. P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal, “Skill learning and task outcome prediction for manipulation,” in 2011 IEEE International Conference on Robotics and Automation, pp. 3828–3834, 2011.
  13. K. Wang, Y. Fan, and I. Sakuma, “Robot programming from a single demonstration for high precision industrial insertion,” Sensors, vol. 23, no. 5, 2023.
  14. G. Ajaykumar and C.-M. Huang, “Multimodal robot programming by demonstration: A preliminary exploration,” 2023.
  15. F. Steinmetz, V. Nitsch, and F. Stulp, “Intuitive task-level programming by demonstration through semantic skill recognition,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3742–3749, 2019.
  16. B. Maric, M. Polic, T. Tabak, and M. Orsag, “Unsupervised optimization approach to in situ calibration of collaborative human-robot interaction tools,” in 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 255–262, 2020.
  17. B. Maric, F. Petric, D. Stuhne, V. Ranogajec, and M. Orsag, “Replicating human skill for robotic deep-micro-hole drilling,” in 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), pp. 2238–2244, 2022.
  18. H. S. G., “Nasa task load index (tlx),” in NASA Ames Research Center Moffett Field, CA United States), January 1986.
  19. S. G. Hart, “Nasa-Task Load Index (NASA-TLX); 20 Years Later,” Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, no. 9, pp. 904–908, 2006.
  20. E. A. Bustamante and R. D. Spain, “Measurement Invariance of the Nasa TLX,” Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 52, no. 19, pp. 1522–1526, 2008.
  21. J. Brooke, “Sus: A quick and dirty usability scale,” Usability Eval. Ind., vol. 189, 11 1995.
  22. H. Ochoa and R. Cortesão, “Impedance control architecture for robotic-assisted micro-drilling tasks,” Journal of Manufacturing Processes, vol. 67, pp. 356–363, 2021.
  23. UNIZG-FER and LARICS, “Aerostream project.” https://aerostream.fer.hr/aerostream. Accessed: 2024-03-04.
Citations (2)

Summary

We haven't generated a summary for this paper yet.