Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Belief Aided Navigation using Bayesian Reinforcement Learning for Avoiding Humans in Blind Spots (2403.10105v1)

Published 15 Mar 2024 in cs.RO, cs.AI, and cs.LG

Abstract: Recent research on mobile robot navigation has focused on socially aware navigation in crowded environments. However, existing methods do not adequately account for human robot interactions and demand accurate location information from omnidirectional sensors, rendering them unsuitable for practical applications. In response to this need, this study introduces a novel algorithm, BNBRL+, predicated on the partially observable Markov decision process framework to assess risks in unobservable areas and formulate movement strategies under uncertainty. BNBRL+ consolidates belief algorithms with Bayesian neural networks to probabilistically infer beliefs based on the positional data of humans. It further integrates the dynamics between the robot, humans, and inferred beliefs to determine the navigation paths and embeds social norms within the reward function, thereby facilitating socially aware navigation. Through experiments in various risk laden scenarios, this study validates the effectiveness of BNBRL+ in navigating crowded environments with blind spots. The model's ability to navigate effectively in spaces with limited visibility and avoid obstacles dynamically can significantly improve the safety and reliability of autonomous vehicles.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com