Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GeoPro-VO: Dynamic Obstacle Avoidance with Geometric Projector Based on Velocity Obstacle (2403.10043v1)

Published 15 Mar 2024 in cs.RO

Abstract: Optimization-based approaches are widely employed to generate optimal robot motions while considering various constraints, such as robot dynamics, collision avoidance, and physical limitations. It is crucial to efficiently solve the optimization problems in practice, yet achieving rapid computations remains a great challenge for optimization-based approaches with nonlinear constraints. In this paper, we propose a geometric projector for dynamic obstacle avoidance based on velocity obstacle (GeoPro-VO) by leveraging the projection feature of the velocity cone set represented by VO. Furthermore, with the proposed GeoPro-VO and the augmented Lagrangian spectral projected gradient descent (ALSPG) algorithm, we transform an initial mixed integer nonlinear programming problem (MINLP) in the form of constrained model predictive control (MPC) into a sub-optimization problem and solve it efficiently. Numerical simulations are conducted to validate the fast computing speed of our approach and its capability for reliable dynamic obstacle avoidance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained trajectory optimization for multicopters,” IEEE Transactions on Robotics, vol. 38, no. 5, pp. 3259–3278, 2022.
  2. Y. Wang, Y. Liu, M. Leibold, M. Buss, and J. Lee, “Hierarchical incremental mpc for redundant robots: a robust and singularity-free approach,” IEEE Transactions on Robotics, 2024.
  3. G. Torrisi, S. Grammatico, R. S. Smith, and M. Morari, “A projected gradient and constraint linearization method for nonlinear model predictive control,” SIAM Journal on Control and Optimization, vol. 56, no. 3, pp. 1968–1999, 2018.
  4. P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm for large-scale constrained optimization,” SIAM review, vol. 47, no. 1, pp. 99–131, 2005.
  5. E. G. Birgin, J. Martínez, and M. Raydan, “Spectral projected gradient methods,” Encyclopedia of Optimization, vol. 2, 2009.
  6. E. G. Birgin, J. M. Martínez, and M. Raydan, “Spectral projected gradient methods: review and perspectives,” Journal of Statistical Software, vol. 60, pp. 1–21, 2014.
  7. R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, “On augmented lagrangian methods with general lower-level constraints,” SIAM Journal on Optimization, vol. 18, no. 4, pp. 1286–1309, 2008.
  8. X. Jia, C. Kanzow, P. Mehlitz, and G. Wachsmuth, “An augmented lagrangian method for optimization problems with structured geometric constraints,” Mathematical Programming, vol. 199, no. 1-2, pp. 1365–1415, 2023.
  9. H. Girgin, T. Löw, T. Xue, and S. Calinon, “Projection-based first-order constrained optimization solver for robotics,” arXiv preprint arXiv:2306.17611, 2023.
  10. X. Chi, T. Löw, Y. Li, Z. Liu, and S. Calinon, “Geometric projectors: Geometric constraints based optimization for robot behaviors,” arXiv preprint arXiv:2309.08802, 2023.
  11. A. Chakravarthy and D. Ghose, “Obstacle avoidance in a dynamic environment: a collision cone approach,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 28, no. 5, pp. 562–574, 1998.
  12. P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” The international journal of robotics research, vol. 17, no. 7, pp. 760–772, 1998.
  13. J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” in 2008 IEEE International Conference on Robotics and Automation, 2008, pp. 1928–1935.
  14. J. v. d. Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body collision avoidance,” in Robotics research.   Springer Berlin Heidelberg, 2011, pp. 3–19.
  15. J. Snape, J. v. d. Berg, S. J. Guy, and D. Manocha, “The hybrid reciprocal velocity obstacle,” IEEE Transactions on Robotics, vol. 27, no. 4, pp. 696–706, 2011.
  16. H. Cheng, Q. Zhu, Z. Liu, T. Xu, and L. Lin, “Decentralized navigation of multiple agents based on orca and model predictive control,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 3446–3451.
  17. X. Zhang, J. Ma, Z. Cheng, M. Tomizuka, and T. H. Lee, “Velocity obstacle based risk-bounded motion planning for stochastic multi-agent systems,” arXiv preprint arXiv:2202.09748, 2022.
  18. S. Sutradhar, N. D. Choudhury, and N. Sinha, “Minlp for hydro-thermal unit commitment problem using bonmin solver,” in 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1–6.
  19. L. Biegler and V. Zavala, “Large-scale nonlinear programming using ipopt: An integrating framework for enterprise-wide dynamic optimization,” Computers & Chemical Engineering, vol. 33, no. 3, pp. 575–582, 2009.

Summary

We haven't generated a summary for this paper yet.