Interactive Distance Field Mapping and Planning to Enable Human-Robot Collaboration (2403.09988v3)
Abstract: Human-robot collaborative applications require scene representations that are kept up-to-date and facilitate safe motions in dynamic scenes. In this letter, we present an interactive distance field mapping and planning (IDMP) framework that handles dynamic objects and collision avoidance through an efficient representation. We define interactive mapping and planning as the process of creating and updating the representation of the scene online while simultaneously planning and adapting the robot's actions based on that representation. The key aspect of this work is an efficient Gaussian Process field that performs incremental updates and handles dynamic objects reliably by identifying moving points via a simple and elegant formulation based on queries from a temporary latent model. In terms of mapping, IDMP is able to fuse point cloud data from single and multiple sensors, query the free space at any spatial resolution, and deal with moving objects without semantics. In terms of planning, IDMP allows seamless integration with gradient-based reactive planners facilitating dynamic obstacle avoidance for safe human-robot interactions. Our mapping performance is evaluated on both real and synthetic datasets. A comparison with similar state-of-the-art frameworks shows superior performance when handling dynamic objects and comparable or better performance in the accuracy of the computed distance and gradient field. Finally, we show how the framework can be used for fast motion planning in the presence of moving objects both in simulated and real-world scenes. An accompanying video, code, and datasets are made publicly available https://uts-ri.github.io/IDMP.
- L. Han, F. Gao, B. Zhou, and S. Shen, “FIESTA: Fast Incremental Euclidean Distance Fields for Online Motion Planning of Aerial Robots,” 2019.
- L. Liu, S. Fryc, L. Wu, T. L. Vu, G. Paul, and T. Vidal-Calleja, “Active and Interactive Mapping With Dynamic Gaussian Process Implicit Surfaces for Mobile Manipulators,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3679–3686, Apr. 2021. [Online]. Available: https://ieeexplore.ieee.org/document/9361306/
- Y. Bai, Z. Miao, X. Wang, Y. Liu, H. Wang, and Y. Wang, “Vdbblox: Accurate and efficient distance fields for path planning and mesh reconstruction,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2023, pp. 7187–7194.
- H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incremental 3D Euclidean Signed Distance Fields for on-board MAV planning,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, BC: IEEE, Sep. 2017, pp. 1366–1373. [Online]. Available: http://ieeexplore.ieee.org/document/8202315/
- Y. Pan, Y. Kompis, L. Bartolomei, R. Mascaro, C. Stachniss, and M. Chli, “Voxfield: Non-Projective Signed Distance Fields for Online Planning and 3D Reconstruction,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Kyoto, Japan: IEEE, Oct. 2022, pp. 5331–5338. [Online]. Available: https://ieeexplore.ieee.org/document/9981318/
- L. Wu, K. M. B. Lee, L. Liu, and T. Vidal-Calleja, “Faithful Euclidean Distance Field from Log-Gaussian Process Implicit Surfaces,” Jan. 2021, arXiv:2010.11487 [cs]. [Online]. Available: http://arxiv.org/abs/2010.11487
- C. L. Gentil, O.-L. Ouabi, L. Wu, C. Pradalier, and T. Vidal-Calleja, “Accurate Gaussian Process-based Distance Fields with applications to Echolocation and Mapping,” Sep. 2023, arXiv:2302.13005 [cs] version: 2. [Online]. Available: http://arxiv.org/abs/2302.13005
- M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant hamiltonian optimization for motion planning,” International Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.
- M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-time gaussian process motion planning via probabilistic inference,” International Journal of Robotics Research, vol. 37, no. 11, pp. 1319–1340, 2018.
- B. Lau, C. Sprunk, and W. Burgard, “Improved updating of euclidean distance maps and voronoi diagrams,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2010, pp. 281–286.
- K. Museth, J. Lait, J. Johanson, J. Budsberg, R. Henderson, M. Alden, P. Cucka, D. Hill, and A. Pearce, “Openvdb: an open-source data structure and toolkit for high-resolution volumes,” in Acm siggraph 2013 courses, 2013, pp. 1–1.
- K. Museth, “Vdb: High-resolution sparse volumes with dynamic topology,” ACM transactions on graphics (TOG), vol. 32, no. 3, pp. 1–22, 2013.
- D. Zhu, C. Wang, W. Wang, R. Garg, S. Scherer, and M. Q.-H. Meng, “VDB-EDT: An Efficient Euclidean Distance Transform Algorithm Based on VDB Data Structure,” May 2021. [Online]. Available: https://arxiv.org/abs/2105.04419v1
- L. Schmid, O. Andersson, A. Sulser, P. Pfreundschuh, and R. Siegwart, “Dynablox: Real-time detection of diverse dynamic objects in complex environments,” IEEE Robotics and Automation Letters, 2023.
- J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “Deepsdf: Learning continuous signed distance functions for shape representation,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 165–174.
- A. Gropp, L. Yariv, N. Haim, M. Atzmon, and Y. Lipman, “Implicit geometric regularization for learning shapes,” arXiv preprint arXiv:2002.10099, 2020.
- M. Pantic, C. Cadena, R. Siegwart, and L. Ott, “Sampling-free obstacle gradients and reactive planning in neural radiance fields (nerf),” arXiv preprint arXiv:2205.01389, 2022.
- J. Ortiz, A. Clegg, J. Dong, E. Sucar, D. Novotny, M. Zollhoefer, and M. Mukadam, “isdf: Real-time neural signed distance fields for robot perception,” arXiv preprint arXiv:2204.02296, 2022.
- B. Lee, C. Zhang, Z. Huang, and D. D. Lee, “Online continuous mapping using gaussian process implicit surfaces,” in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.
- L. Wu, K. M. B. Lee, C. Le Gentil, and T. Vidal-Calleja, “Log-GPIS-MOP: A Unified Representation for Mapping, Odometry, and Planning,” IEEE Transactions on Robotics, pp. 1–17, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10202666/
- L. Wu, C. Le Gentil, and T. Vidal-Calleja, “Pseudo Inputs Optimisation for Efficient Gaussian Process Distance Fields,” 2023.
- S. Robla-Gomez, V. M. Becerra, J. R. Llata, E. Gonzalez-Sarabia, C. Torre-Ferrero, and J. Perez-Oria, “Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments,” IEEE Access, vol. 5, pp. 26 754–26 773, 2017. [Online]. Available: https://ieeexplore.ieee.org/document/8107677/
- S. Patil, V. Vasu, and K. V. S. Srinadh, “Advances and perspectives in collaborative robotics: a review of key technologies and emerging trends,” vol. 2, no. 1, p. 13. [Online]. Available: https://doi.org/10.1007/s44245-023-00021-8
- A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias, “Safety in human-robot collaborative manufacturing environments: Metrics and control,” IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2, pp. 882–893, 2016.
- F. Schirmer, P. Kranz, J. Schmitt, and T. Kaupp, “Anomaly detection for dynamic human-robot assembly: Application of an lstm-based autoencoder to interpret uncertain human behavior in hrc,” in Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, 2023, pp. 881–883.
- C. Morato, K. N. Kaipa, B. Zhao, and S. K. Gupta, “Toward Safe Human Robot Collaboration by Using Multiple Kinects Based Real-Time Human Tracking,” Journal of Computing and Information Science in Engineering, vol. 14, no. 1, p. 011006, Mar. 2014. [Online]. Available: https://asmedigitalcollection.asme.org/computingengineering/article/doi/10.1115/1.4025810/370115/Toward-Safe-Human-Robot-Collaboration-by-Using
- F. Schirmer, P. Kranz, B. Bhat, C. Rose, J. Schmitt, and T. Kaupp, “Towards a path planning and communication framework for seamless human-robot assembly,” in 19th Annual ACM/IEEE International Conference on Human-Robot Interaction.
- C. Tonola, M. Faroni, N. Pedrocchi, and M. Beschi, “Anytime informed path re-planning and optimization for human-robot collaboration,” in 2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN). IEEE, 2021, pp. 997–1002.
- M. Faroni, M. Beschi, and N. Pedrocchi, “An MPC Framework for Online Motion Planning in Human-Robot Collaborative Tasks,” in 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Zaragoza, Spain: IEEE, Sep. 2019, pp. 1555–1558. [Online]. Available: https://ieeexplore.ieee.org/document/8869047/
- F. Flacco, T. Kroeger, A. De Luca, and O. Khatib, “A Depth Space Approach for Evaluating Distance to Objects,” Journal of Intelligent & Robotic Systems, vol. 80, no. 1, pp. 7–22, Dec. 2015. [Online]. Available: https://doi.org/10.1007/s10846-014-0146-2
- F. Flacco and A. De Luca, “Real-Time Computation of Distance to Dynamic Obstacles With Multiple Depth Sensors,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 56–63, Jan. 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7421962/
- W. Martens, Y. Poffet, P. R. Soria, R. Fitch, and S. Sukkarieh, “Geometric priors for gaussian process implicit surfaces,” IEEE Robotics and Automation Letters (RA-L), pp. 373–380, 2017.
- H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe Local Exploration for Replanning in Cluttered Unknown Environments for Microaerial Vehicles,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1474–1481, Jul. 2018. [Online]. Available: http://ieeexplore.ieee.org/document/8276241/