Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DTG : Diffusion-based Trajectory Generation for Mapless Global Navigation (2403.09900v4)

Published 14 Mar 2024 in cs.RO

Abstract: We present a novel end-to-end diffusion-based trajectory generation method, DTG, for mapless global navigation in challenging outdoor scenarios with occlusions and unstructured off-road features like grass, buildings, bushes, etc. Given a distant goal, our approach computes a trajectory that satisfies the following goals: (1) minimize the travel distance to the goal; (2) maximize the traversability by choosing paths that do not lie in undesirable areas. Specifically, we present a novel Conditional RNN(CRNN) for diffusion models to efficiently generate trajectories. Furthermore, we propose an adaptive training method that ensures that the diffusion model generates more traversable trajectories. We evaluate our methods in various outdoor scenes and compare the performance with other global navigation algorithms on a Husky robot. In practice, we observe at least a 15% improvement in traveling distance and around a 7% improvement in traversability.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. S. Ganesan, S. K. Natarajan, and J. Srinivasan, “A global path planning algorithm for mobile robot in cluttered environments with an improved initial cost solution and convergence rate,” Arabian Journal for Science and Engineering, vol. 47, no. 3, pp. 3633–3647, 2022.
  2. P. Gao, Z. Liu, Z. Wu, and D. Wang, “A global path planning algorithm for robots using reinforcement learning,” in 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO).   IEEE, 2019, pp. 1693–1698.
  3. T. Ort, L. Paull, and D. Rus, “Autonomous vehicle navigation in rural environments without detailed prior maps,” in 2018 IEEE international conference on robotics and automation (ICRA).   IEEE, 2018, pp. 2040–2047.
  4. E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driving: Common practices and emerging technologies,” IEEE access, vol. 8, pp. 58 443–58 469, 2020.
  5. T. Hoffmann and G. Prause, “On the regulatory framework for last-mile delivery robots,” Machines, vol. 6, no. 3, p. 33, 2018.
  6. C. Chen, E. Demir, Y. Huang, and R. Qiu, “The adoption of self-driving delivery robots in last mile logistics,” Transportation research part E: logistics and transportation review, vol. 146, p. 102214, 2021.
  7. A. Davids, “Urban search and rescue robots: from tragedy to technology,” IEEE Intelligent systems, vol. 17, no. 2, pp. 81–83, 2002.
  8. G. Huang, A. Rad, and Y. Wong, “Online slam in dynamic environments,” in ICAR’05. Proceedings., 12th International Conference on Advanced Robotics, 2005.   IEEE, 2005, pp. 262–267.
  9. C. Giovannangeli, P. Gaussier, and G. Désilles, “Robust mapless outdoor vision-based navigation,” in 2006 IEEE/RSJ international conference on intelligent robots and systems.   IEEE, 2006, pp. 3293–3300.
  10. D. Shah and S. Levine, “Viking: Vision-based kilometer-scale navigation with geographic hints,” arXiv preprint arXiv:2202.11271, 2022.
  11. J. Liang, P. Gao, X. Xiao, A. J. Sathyamoorthy, M. Elnoor, M. Lin, and D. Manocha, “Mtg: Mapless trajectory generator with traversability coverage for outdoor navigation,” arXiv preprint arXiv:2309.08214, 2023.
  12. M. Psotka, F. Duchon, M. Roman, T. Michal, and D. Michal, “Global path planning method based on a modification of the wavefront algorithm for ground mobile robots,” Robotics, vol. 12, no. 1, p. 25, 2023.
  13. L. Wijayathunga, A. Rassau, and D. Chai, “Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review,” Applied Sciences, vol. 13, no. 17, p. 9877, 2023.
  14. Y. Zhang, R. Ge, L. Lyu, J. Zhang, C. Lyu, and X. Yang, “A virtual end-to-end learning system for robot navigation based on temporal dependencies,” IEEE Access, vol. 8, pp. 134 111–134 123, 2020.
  15. T. Ort, I. Gilitschenski, and D. Rus, “Autonomous navigation in inclement weather based on a localizing ground penetrating radar,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3267–3274, 2020.
  16. I. Jeong, Y. Jang, J. Park, and Y. K. Cho, “Motion planning of mobile robots for autonomous navigation on uneven ground surfaces,” Journal of Computing in Civil Engineering, vol. 35, no. 3, p. 04021001, 2021.
  17. W. Eom, J. Park, and J. Lee, “Hazardous area navigation with temporary beacons,” International Journal of Control, Automation and Systems, vol. 8, no. 5, pp. 1082–1090, 2010.
  18. J. Liang, K. Weerakoon, T. Guan, N. Karapetyan, and D. Manocha, “Adaptiveon: Adaptive outdoor local navigation method for stable and reliable actions,” IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 648–655, 2022.
  19. K. Weerakoon, A. J. Sathyamoorthy, J. Liang, T. Guan, U. Patel, and D. Manocha, “Graspe: Graph based multimodal fusion for robot navigation in outdoor environments,” IEEE Robotics and Automation Letters, 2023.
  20. X. Xiao, J. Biswas, and P. Stone, “Learning inverse kinodynamics for accurate high-speed off-road navigation on unstructured terrain,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 6054–6060, 2021.
  21. H. Karnan, K. S. Sikand, P. Atreya, S. Rabiee, X. Xiao, G. Warnell, P. Stone, and J. Biswas, “Vi-ikd: High-speed accurate off-road navigation using learned visual-inertial inverse kinodynamics,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 3294–3301.
  22. A. Pokhrel, A. Datar, M. Nazeri, and X. Xiao, “Cahsor: Competence-aware high-speed off-road ground navigation in se (3),” arXiv preprint arXiv:2402.07065, 2024.
  23. H. Jardali, M. Ali, and L. Liu, “Autonomous mapless navigation on uneven terrains,” arXiv preprint arXiv:2402.13443, 2024.
  24. J. Liang, U. Patel, A. J. Sathyamoorthy, and D. Manocha, “Crowd-steer: Realtime smooth and collision-free robot navigation in densely crowded scenarios trained using high-fidelity simulation,” in Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, 2021, pp. 4221–4228.
  25. A. Sridhar, D. Shah, C. Glossop, and S. Levine, “Nomad: Goal masked diffusion policies for navigation and exploration,” arXiv preprint arXiv:2310.07896, 2023.
  26. D. Shah, A. Sridhar, N. Dashora, K. Stachowicz, K. Black, N. Hirose, and S. Levine, “Vint: A foundation model for visual navigation,” arXiv preprint arXiv:2306.14846, 2023.
  27. J. Liang, Y.-L. Qiao, T. Guan, and D. Manocha, “Of-vo: Efficient navigation among pedestrians using commodity sensors,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6148–6155, 2021.
  28. D. Malyuta, T. P. Reynolds, M. Szmuk, T. Lew, R. Bonalli, M. Pavone, and B. Acikmese, “Convex optimization for trajectory generation: A tutorial on generating dynamically feasible trajectories reliably and efficiently,” IEEE Control Systems Magazine, vol. 42, no. 5, pp. 40–113, 2022.
  29. A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning and trajectory planning algorithms: A general overview,” Motion and Operation Planning of Robotic Systems: Background and Practical Approaches, pp. 3–27, 2015.
  30. J. R. Sanchez-Ibanez, C. J. Perez-del Pulgar, and A. Garcia-Cerezo, “Path planning for autonomous mobile robots: A review,” Sensors, vol. 21, no. 23, p. 7898, 2021.
  31. Q. Wu, J. Wang, J. Liang, X. Gong, and D. Manocha, “Image-goal navigation in complex environments via modular learning,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6902–6909, 2022.
  32. Y. Jang, J. Baek, and S. Han, “Hindsight intermediate targets for mapless navigation with deep reinforcement learning,” IEEE Transactions on Industrial Electronics, vol. 69, no. 11, pp. 11 816–11 825, 2021.
  33. O. Doukhi and D. J. Lee, “Deep reinforcement learning for autonomous map-less navigation of a flying robot,” IEEE Access, vol. 10, pp. 82 964–82 976, 2022.
  34. G. Kahn, P. Abbeel, and S. Levine, “Land: Learning to navigate from disengagements,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1872–1879, 2021.
  35. C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song, “Diffusion policy: Visuomotor policy learning via action diffusion,” arXiv preprint arXiv:2303.04137, 2023.
  36. A. Datar, C. Pan, M. Nazeri, and X. Xiao, “Toward wheeled mobility on vertically challenging terrain: Platforms, datasets, and algorithms,” in 2024 IEEE international conference on robotics and automation (ICRA).   IEEE, 2024.
  37. Z. Xu, B. Liu, X. Xiao, A. Nair, and P. Stone, “Benchmarking reinforcement learning techniques for autonomous navigation,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 9224–9230.
  38. Z. Xu, G. Dhamankar, A. Nair, X. Xiao, G. Warnell, B. Liu, Z. Wang, and P. Stone, “Applr: Adaptive planner parameter learning from reinforcement,” in 2021 IEEE international conference on robotics and automation (ICRA).   IEEE, 2021, pp. 6086–6092.
  39. Z. Xu, X. Xiao, G. Warnell, A. Nair, and P. Stone, “Machine learning methods for local motion planning: A study of end-to-end vs. parameter learning,” in 2021 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).   IEEE, 2021, pp. 217–222.
  40. S. J. Fusic, G. Kanagaraj, K. Hariharan, and S. Karthikeyan, “Optimal path planning of autonomous navigation in outdoor environment via heuristic technique,” Transportation research interdisciplinary perspectives, vol. 12, p. 100473, 2021.
  41. J. Li, H. Qin, J. Wang, and J. Li, “Openstreetmap-based autonomous navigation for the four wheel-legged robot via 3d-lidar and ccd camera,” IEEE Transactions on Industrial Electronics, vol. 69, no. 3, pp. 2708–2717, 2021.
  42. N. Akai, L. Y. Morales, E. Takeuchi, Y. Yoshihara, and Y. Ninomiya, “Robust localization using 3d ndt scan matching with experimentally determined uncertainty and road marker matching,” in 2017 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2017, pp. 1356–1363.
  43. S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke, and M. J. Milford, “Visual place recognition: A survey,” ieee transactions on robotics, vol. 32, no. 1, pp. 1–19, 2015.
  44. N. Hirose, D. Shah, A. Sridhar, and S. Levine, “Exaug: Robot-conditioned navigation policies via geometric experience augmentation,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 4077–4084.
  45. D. D. Fan, K. Otsu, Y. Kubo, A. Dixit, J. Burdick, and A.-A. Agha-Mohammadi, “Step: Stochastic traversability evaluation and planning for risk-aware off-road navigation,” arXiv preprint arXiv:2103.02828, 2021.
  46. M. V. Gasparino, A. N. Sivakumar, Y. Liu, A. E. Velasquez, V. A. Higuti, J. Rogers, H. Tran, and G. Chowdhary, “Wayfast: Navigation with predictive traversability in the field,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 651–10 658, 2022.
  47. F. Jonas, M. Matias, C. Nived, C. Cesar, F. Maurice, and H. Marco, “Fast traversability estimation for wild visual navigation,” in Proceedings of Robotics: Science and Systems, 2023. [Online]. Available: https://arxiv.org/pdf/2305.08510.pdf
  48. K. S. Sikand, S. Rabiee, A. Uccello, X. Xiao, G. Warnell, and J. Biswas, “Visual representation learning for preference-aware path planning,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 11 303–11 309.
  49. S. Hosseinpoor, J. Torresen, M. Mantelli, D. Pitto, M. Kolberg, R. Maffei, and E. Prestes, “Traversability analysis by semantic terrain segmentation for mobile robots,” in 2021 IEEE 17th International Conference on Automation Science and Engineering (CASE).   IEEE, 2021, pp. 1407–1413.
  50. H. Xue, H. Fu, L. Xiao, Y. Fan, D. Zhao, and B. Dai, “Traversability analysis for autonomous driving in complex environment: A lidar-based terrain modeling approach,” Journal of Field Robotics, vol. 40, no. 7, pp. 1779–1803, 2023.
  51. P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic terrain mapping for mobile robots with uncertain localization,” IEEE Robotics and Automation Letters (RA-L), vol. 3, no. 4, pp. 3019–3026, 2018.
  52. X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion planning and control for mobile robot navigation using machine learning: a survey,” Autonomous Robots, vol. 46, no. 5, pp. 569–597, 2022.
  53. B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat, N. Nayakanti, A. Cornman, K. Chen, B. Douillard, C. P. Lam, D. Anguelov et al., “Multipath++: Efficient information fusion and trajectory aggregation for behavior prediction,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 7814–7821.
  54. N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp, “Wayformer: Motion forecasting via simple & efficient attention networks,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 2980–2987.
  55. S. Shi, L. Jiang, D. Dai, and B. Schiele, “Motion transformer with global intention localization and local movement refinement,” Advances in Neural Information Processing Systems, vol. 35, pp. 6531–6543, 2022.
  56. F. Altché and A. de La Fortelle, “An lstm network for highway trajectory prediction,” in 2017 IEEE 20th international conference on intelligent transportation systems (ITSC).   IEEE, 2017, pp. 353–359.
  57. M. Yang, M. Pei, and Y. Jia, “Online maximum a posteriori tracking of multiple objects using sequential trajectory prior,” Image and Vision Computing, vol. 94, p. 103867, 2020.
  58. A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan: Socially acceptable trajectories with generative adversarial networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2255–2264.
  59. A. Payandeh, K. T. Baghaei, P. Fayyazsanavi, S. B. Ramezani, Z. Chen, and S. Rahimi, “Deep representation learning: Fundamentals, technologies, applications, and open challenges,” IEEE Access, vol. 11, pp. 137 621–137 659, 2023.
  60. K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep conditional generative models,” Advances in neural information processing systems, vol. 28, 2015.
  61. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
  62. J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” arXiv preprint arXiv:2010.02502, 2020.
  63. B.-S. Hua, M.-K. Tran, and S.-K. Yeung, “Pointwise convolutional neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 984–993.
  64. D. Kingma, T. Salimans, B. Poole, and J. Ho, “Variational diffusion models,” Advances in neural information processing systems, vol. 34, pp. 21 696–21 707, 2021.
  65. D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jing Liang (89 papers)
  2. Amirreza Payandeh (9 papers)
  3. Daeun Song (12 papers)
  4. Xuesu Xiao (91 papers)
  5. Dinesh Manocha (366 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com