Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constrained Passive Interaction Control: Leveraging Passivity and Safety for Robot Manipulators (2403.09853v1)

Published 14 Mar 2024 in cs.RO

Abstract: Passivity is necessary for robots to fluidly collaborate and interact with humans physically. Nevertheless, due to the unconstrained nature of passivity-based impedance control laws, the robot is vulnerable to infeasible and unsafe configurations upon physical perturbations. In this paper, we propose a novel control architecture that allows a torque-controlled robot to guarantee safety constraints such as kinematic limits, self-collisions, external collisions and singularities and is passive only when feasible. This is achieved by constraining a dynamical system based impedance control law with a relaxed hierarchical control barrier function quadratic program subject to multiple concurrent, possibly contradicting, constraints. Joint space constraints are formulated from efficient data-driven self- and external C2 collision boundary functions. We theoretically prove constraint satisfaction and show that the robot is passive when feasible. Our approach is validated in simulation and real robot experiments on a 7DoF Franka Research 3 manipulator.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. N. Hogan, “Impedance control: An approach to manipulation,” in 1984 American Control Conference, 1984, pp. 304–313.
  2. J. Colgate, “Robust control of dynamically interacting systems,” International Journal of Control, vol. 48, no. 1, pp. 65–88, Jul. 1988.
  3. G. A. Folkertsma and S. Stramigioli, “Energy in robotics,” Foundations and Trends® in Robotics, vol. 6, no. 3, pp. 140–210, 2017. [Online]. Available: http://dx.doi.org/10.1561/2300000038
  4. S. Stramigioli, C. Melchiorri, and S. Andreotti, “A passivity-based control scheme for robotic grasping and manipulation,” in Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), vol. 3, 1999, pp. 2951–2956 vol.3.
  5. P. Li and R. Horowitz, “Passive velocity field control of mechanical manipulators,” IEEE Transactions on Robotics and Automation, vol. 15, no. 4, pp. 751–763, 1999.
  6. Y. Kishi, Z. W. Luo, F. Asano, and S. Hosoe, “Passive impedance control with time-varying impedance center,” in Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694), vol. 3, 2003, pp. 1207–1212 vol.3.
  7. V. Duindam, S. Stramigioli, and J. Scherpen, “Passive compensation of nonlinear robot dynamics,” IEEE Transactions on Robotics and Automation, vol. 20, no. 3, pp. 480–488, 2004.
  8. A. Albu-Schäffer, C. Ott, and G. Hirzinger, “A unified passivity-based control framework for position, torque and impedance control of flexible joint robots,” The International Journal of Robotics Research, vol. 26, no. 1, pp. 23–39, 2007.
  9. F. Ferraguti, C. Secchi, and C. Fantuzzi, “A tank-based approach to impedance control with variable stiffness,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 4948–4953.
  10. K. Kronander and A. Billard, “Passive interaction control with dynamical systems,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 106–113, 2015.
  11. F. Ferraguti, N. Preda, A. Manurung, M. Bonfè, O. Lambercy, R. Gassert, R. Muradore, P. Fiorini, and C. Secchi, “An energy tank-based interactive control architecture for autonomous and teleoperated robotic surgery,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1073–1088, 2015.
  12. F. J. Abu-Dakka and M. Saveriano, “Variable impedance control and learning—a review,” Frontiers in Robotics and AI, vol. 7, 2020.
  13. K. Kronander and A. Billard, “Stability considerations for variable impedance control,” IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1298–1305, 2016.
  14. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” The International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.
  15. A. Dietrich, C. Ott, and A. Albu-Schäffer, “An overview of null space projections for redundant, torque-controlled robots,” The International Journal of Robotics Research, vol. 34, no. 11, pp. 1385–1400, 2015.
  16. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in 2019 18th European Control Conference (ECC), 2019, pp. 3420–3431.
  17. M. Rauscher, M. Kimmel, and S. Hirche, “Constrained robot control using control barrier functions,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 279–285.
  18. M. A. Murtaza, S. Aguilera, V. Azimi, and S. Hutchinson, “Real-time safety and control of robotic manipulators with torque saturation in operational space,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 702–708.
  19. S. S. M. Salehian, N. Figueroa, and A. Billard, “A unified framework for coordinated multi-arm motion planning,” The International Journal of Robotics Research, vol. 37, no. 10, pp. 1205–1232, 2018. [Online]. Available: https://doi.org/10.1177/0278364918765952
  20. M. Koptev, N. Figueroa, and A. Billard, “Real-time self-collision avoidance in joint space for humanoid robots,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1240–1247, 2021.
  21. M. Koptev, N. Figueroa, and A. Billard, “Neural joint space implicit signed distance functions for reactive robot manipulator control,” IEEE Robotics and Automation Letters, vol. 8, no. 2, pp. 480–487, 2023.
  22. V. Kurtz, P. M. Wensing, and H. Lin, “Control barrier functions for singularity avoidance in passivity-based manipulator control,” in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 6125–6130.
  23. A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs for safety critical systems,” IEEE Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.
  24. Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high relative-degree safety-critical constraints,” in 2016 American Control Conference (ACC).   IEEE, 2016, pp. 322–328.
  25. T. Yoshikawa, “Manipulability of robotic mechanisms,” The International Journal of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985. [Online]. Available: https://doi.org/10.1177/027836498500400201
  26. J. Lee, J. Kim, and A. D. Ames, “Hierarchical relaxation of safety-critical controllers: Mitigating contradictory safety conditions with application to quadruped robots,” 2023.
  27. S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language for convex optimization,” Journal of Machine Learning Research, vol. 17, no. 83, pp. 1–5, 2016.
  28. J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded convex optimization,” Optimization and Engineering, vol. 12, no. 1, pp. 1–27, 2012.
  29. Y. Li, Y. Zhang, A. Razmjoo, and S. Calinon, “Learning robot geometry as distance fields: Applications to whole-body manipulation,” 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com