Signatures of the accelerating black holes with a cosmological constant from the $\textrm{Sgr~A}^\star$ and $\textrm{M87}^\star$ shadow prospects (2403.09756v2)
Abstract: Recently, the Event Horizon Telescope (EHT) achieved the realization of an image of the supermassive black hole $\textrm{Sgr~A}\star$ showing an angular shadow diameter $\mathcal{D}= 48.7 \pm 7\mu as$ and the fractional deviation $\mathbf{\delta} = -0.08{+0.09}{-0.09}~\text{(VLTI)},-0.04{+0.09}{-0.10}~\text{(Keck)}$, alongside the earlier image of $\textrm{M87}\star$ with angular diameter $ \mathcal{D}=42 \pm 3 \mu as$, deviation $\mathbf{\delta}=-0.01{+0.17}_{-0.17}$ and deviations from circularity estimated to be $\Delta \mathcal{C}\lesssim 10\%$. In addition, the shadow radii are assessed within the ranges $3.38 \le \frac{r_{\text{s}}}{M} \le 6.91$ for $\textrm{M87}\star$ and $3.85 \le \frac{r_{\text{s}}}{M} \le 5.72$ as well as $3.95 \le \frac{r_{\text{s}}}{M} \le 5.92$ for $\textrm{Sgr~A}\star$ using the Very Large Telescope Interferometer (VLTI) and Keck observatories, respectively. These values are provided with $1$-$\sigma$ and $2$-$\sigma$ measurements. Such realizations can unveil a better comprehension of gravitational physics at the horizon scale. In this paper, we use the EHT observational results for $\textrm{M87}\star$ and $\textrm{Sgr~A}\star$ to elaborate the constraints on parameters of accelerating black holes with a cosmological constant. Concretely, we utilize the mass and distance of both black holes to derive the observables associated with the accelerating black hole shadow. First, we compare our findings with observed quantities such as angular diameter, circularity, shadow radius, and the fractional deviation from the $\textrm{M87}\star$ data. This comparison reveals constraints within the acceleration parameter and the cosmological constant... Lastly, one cannot rule out the possibility of the negative values for the cosmological constant on the emergence of accelerated black hole solutions within the context of minimal gauged supergravity...
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett., 875:L1, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4, 2019.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett., 930(2):L12, 2022.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophys. J. Lett., 930(2):L13, 2022.
- B. P. Abbott et al. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Phys. Rev. Lett., 116(13):131103, 2016.
- J. M. Bardeen. Timelike and null geodesics in the Kerr metric. In Les Houches Summer School of Theoretical Physics: Black Holes, pages 215–240, 1973.
- Viewing the shadow of the black hole at the galactic center. Astrophys. J. Lett., 528:L13, 2000.
- Observational signatures of a static f(R) black hole with thin accretion disk. Eur. Phys. J. C, 83(12):1160, 2023.
- Geodetic precession and shadow of quantum extended black holes. Class. Quant. Grav., 41(1):015032, 2024.
- Weak gravitational lensing and shadow of a GUP-modified Schwarzschild black hole in the presence of plasma. Phys. Dark Univ., 43:101392, 2024.
- Investigating shadow images and rings of the charged Horndeski black hole illuminated by various thin accretions. Eur. Phys. J. C, 83:1052, 2023.
- Daniele Gregoris. On some new black hole, wormhole and naked singularity solutions in the free Dirac–Born–Infeld theory. Eur. Phys. J. C, 83(11):1056, 2023.
- Shadow of rotating and twisting charged black holes with cloud of strings and quintessence. Eur. Phys. J. C, 83(9):855, 2023.
- Constraints via the Event Horizon Telescope for Black Hole Solutions with Dark Matter under the Generalized Uncertainty Principle Minimal Length Scale Effect. Annalen Phys., 2023:2300390, 9 2023.
- 4D scale-dependent Schwarzschild-AdS/dS black holes: study of shadow and weak deflection angle and greybody bounding. Eur. Phys. J. Plus, 138(3):192, 2023.
- Rotating black hole in Kalb–Ramond gravity: Constraining parameters by comparison with EHT observations of Sgr A* and M87*. Phys. Dark Univ., 42:101334, 2023.
- Orbits in static magnetically and dyonically charged Einstein-Euler-Heisenberg black hole spacetimes. Phys. Rev. D, 108(6):064014, 2023.
- Probing Schwarzschild-like black holes in metric-affine bumblebee gravity with accretion disk, deflection angle, greybody bounds, and neutrino propagation. JCAP, 12:026, 2023.
- Rotating black hole mimicker surrounded by the string cloud. Phys. Rev. D, 109(2):024002, 2024.
- H. Weyl. The theory of gravitation. Annalen Phys., 54:117–145, 1917.
- ET Newman and LA Tamburino. New approach to einstein’s empty space field equations. Journal of Mathematical Physics, 2(5):667–674, 1961.
- I. Robinson and A. Trautman. Some spherical gravitational waves in general relativity. Proc. Roy. Soc. Lond. A, 265:463–473, 1962.
- Uniformly accelerating charged mass in general relativity. Phys. Rev. D, 2:1359–1370, Oct 1970.
- Interpreting the C-metric. Class. Quant. Grav., 23:6745–6766, 2006.
- J. F. Plebanski and M. Demianski. Rotating, charged, and uniformly accelerating mass in general relativity. Annals Phys., 98:98–127, 1976.
- Radiation from accelerated black holes in an anti-de Sitter universe. Phys. Rev. D, 68:124004, 2003.
- Radiation from accelerated black holes in de Sitter universe. Phys. Rev. D, 68:024005, 2003.
- W. Kinnersley and M. Walker. Uniformly accelerating charged mass in general relativity. Phys. Rev. D, 2:1359–1370, 1970.
- Oscar J. C. Dias and Jose P. S. Lemos. Pair of accelerated black holes in anti-de Sitter background: AdS C metric. Phys. Rev. D, 67:064001, 2003.
- Oscar J. C. Dias and Jose P. S. Lemos. Pair of accelerated black holes in a de Sitter background: The dS C metric. Phys. Rev. D, 67:084018, 2003.
- J. B. Griffiths and J. Podolsky. A New look at the Plebanski-Demianski family of solutions. Int. J. Mod. Phys. D, 15:335–370, 2006.
- Pair creation of dilaton black holes. Phys. Rev. D, 49:2909–2917, 1994.
- Smooth metrics for snapping strings. Phys. Rev. D, 52:5598–5605, 1995.
- Breaking cosmic strings without monopoles. Phys. Rev. Lett., 75:3390–3393, 1995.
- A Rotating black ring solution in five-dimensions. Phys. Rev. Lett., 88:101101, 2002.
- Thermodynamics of Accelerating Black Holes. Phys. Rev. Lett., 117(13):131303, 2016.
- Marco Astorino. Thermodynamics of Regular Accelerating Black Holes. Phys. Rev. D, 95(6):064007, 2017.
- Thermodynamics of accelerating and supersymmetric AdS4 black holes. Phys. Rev. D, 104(8):086005, 2021.
- Holographic Thermodynamics of Accelerating Black Holes. Phys. Rev. D, 98(10):104038, 2018.
- Thermodynamics of Charged, Rotating, and Accelerating Black Holes. JHEP, 04:096, 2019.
- Accelerating AdS black holes as the holographic heat engines in a benchmarking scheme. Eur. Phys. J. C, 78(8):645, 2018.
- Thermodynamics of charged accelerating AdS black holes and holographic heat engines. JHEP, 02:144, 2019.
- Charged accelerating AdS black hole of f(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity and the Joule–Thomson expansion. Int. J. Geom. Meth. Mod. Phys., 17(09):2050136, 2020.
- f(R)𝑓𝑅f(R)italic_f ( italic_R ) Gravity Effects on Charged Accelerating AdS Black Holes using Holographic Tools. Adv. High Energy Phys., 2020:4092730, 2020.
- Cosmic strings and primordial black holes. JCAP, 11:008, 2018.
- Alexander Gußmann. Polarimetric signatures of the photon ring of a black hole that is pierced by a cosmic axion string. JHEP, 08:160, 2021.
- Juan Martin Maldacena. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys., 2:231–252, 1998.
- Black hole microstates in AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT from supersymmetric localization. JHEP, 05:054, 2016.
- Exact microstate counting for dyonic black holes in AdS4. Phys. Lett. B, 771:462–466, 2017.
- Black Holes in 4D 𝒩𝒩\mathcal{N}caligraphic_N=4 Super-Yang-Mills Field Theory. Phys. Rev. X, 10(2):021037, 2020.
- Microscopic entropy of rotating electrically charged AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT black holes from field theory localization. JHEP, 03:081, 2020.
- Holographic microstate counting for AdS44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT black holes in massive IIA supergravity. JHEP, 10:190, 2017.
- Black hole entropy in massive Type IIA. Class. Quant. Grav., 35(3):035004, 2018.
- Universal spinning black holes and theories of class ℛℛ\mathcal{R}caligraphic_R. JHEP, 12:054, 2019.
- The Cosmological Constant and Dark Energy. Rev. Mod. Phys., 75:559–606, 2003.
- P-V criticality of charged AdS black holes. JHEP, 07:033, 2012.
- P-V criticality in the extended phase space of Gauss-Bonnet black holes in AdS space. JHEP, 09:005, 2013.
- On Heat Properties of AdS Black Holes in Higher Dimensions. JHEP, 05:149, 2015.
- On Thermodynamics of AdS Black Holes in M-Theory. Eur. Phys. J. C, 76(2):73, 2016.
- Thermal Image and Phase Transitions of Charged AdS Black Holes using Shadow Analysis. Int. J. Mod. Phys. A, 35(27):2050170, 2020.
- H. El Moumni. Revisiting the phase transition of AdS-Maxwell–power-Yang–Mills black holes via AdS/CFT tools. Phys. Lett. B, 776:124–132, 2018.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett., 875(1):L2, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett., 875(1):L3, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, 2019.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophys. J. Lett., 910(1):L12, 2021.
- Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophys. J. Lett., 910(1):L13, 2021.
- R. A. Konoplya. Quantum corrected black holes: quasinormal modes, scattering, shadows. Phys. Lett. B, 804:135363, 2020.
- Observing the Inner Shadow of a Black Hole: A Direct View of the Event Horizon. Astrophys. J., 918(1):6, 2021.
- Shadows of 5D black holes from string theory. Phys. Lett. B, 812:136025, 2021.
- Deflection angle and shadow behaviors of quintessential black holes in arbitrary dimensions. Class. Quant. Grav., 37(21):215004, 2020.
- Investigating the existence of gravitomagnetic monopole in M87*. Eur. Phys. J. C, 81(10):939, 2021.
- Fuzzball Shadows: Emergent Horizons from Microstructure. Phys. Rev. Lett., 127(17):171601, 2021.
- Effect of plasma on gravitational lensing by a Schwarzschild black hole immersed in perfect fluid dark matter. Phys. Rev. D, 104(8):084015, 2021.
- Superentropic AdS black hole shadows. Phys. Lett. B, 821:136619, 2021.
- Parameter estimation of hairy Kerr black holes from its shadow and constraints from M87*. Mon. Not. Roy. Astron. Soc., 504:5927–5940, 2021.
- R. A. Konoplya and A. Zhidenko. Shadows of parametrized axially symmetric black holes allowing for separation of variables. Phys. Rev. D, 103(10):104033, 2021.
- Quasiperiodic oscillations, quasinormal modes and shadows of Bardeen–Kiselev Black Holes. Phys. Dark Univ., 35:100930, 2022.
- Influence of accretion flow and magnetic charge on the observed shadows and rings of the Hayward black hole. Phys. Rev. D, 105(2):023024, 2022.
- Black hole shadow in symmergent gravity. Phys. Dark Univ., 34:100900, 2021.
- Nonlinear electrodynamics effects on the black hole shadow, deflection angle, quasinormal modes and greybody factors. JCAP, 01(01):009, 2022.
- The Nature of Black Hole Shadows. Astrophys. J., 920(2):155, 2021.
- Thin accretion disk onto slowly rotating black holes in Einstein-Æther theory. JCAP, 02(02):034, 2022.
- Constraining alternatives to the Kerr black hole. Mon. Not. Roy. Astron. Soc., 506(1):1229–1236, 2021.
- Gravitational lensing effects of Schwarzschild–de Sitter black hole. Phys. Rev. D, 92(8):083011, 2015.
- Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D, 95(4):044017, 2017.
- Beyond lensing by the cosmological constant. Phys. Rev. D, 95(2):023509, 2017.
- Direct Probe of Dark Energy through Gravitational Lensing Effect. JCAP, 08:036, 2017.
- Cosmological constant effect on charged and rotating black hole shadows. Int. J. Geom. Meth. Mod. Phys., 18(12):2150188, 2021.
- Black hole shadow with a cosmological constant for cosmological observers. The European Physical Journal C, 79(11), nov 2019.
- Estimating the Cosmological Constant from Shadows of Kerr–de Sitter Black Holes. Universe, 8(1):52, 2022.
- Revisiting the shadow of braneworld black holes. Phys. Rev. D, 104(2):024001, 2021.
- R. V. Maluf and Juliano C. S. Neves. Black holes with a cosmological constant in bumblebee gravity. Phys. Rev. D, 103(4):044002, 2021.
- Sunny Vagnozzi et al. Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A. Class. Quant. Grav., 40(16):165007, 2023.
- An Upper Limit on the Charge of the Black Hole Sgr A* from EHT Observations. Astrophys. J., 944(2):174, 2023.
- Testing Rotating Regular Metrics with EHT Results of Sgr A*. Astrophys. J., 939(2):77, 2022.
- Signatures of regular black holes from the shadow of Sgr A* and M87*. JCAP, 09:066, 2022.
- Probing Lorentz symmetry violation using the first image of Sagittarius A*: Constraints on standard-model extension coefficients. Phys. Rev. D, 106(10):104050, 2022.
- Probing a non-linear electrodynamics black hole with thin accretion disk, shadow, and deflection angle with M87* and Sgr A* from EHT. Phys. Dark Univ., 40:101178, 2023.
- Tests of Loop Quantum Gravity from the Event Horizon Telescope Results of Sgr A*. Astrophys. J., 944(2):149, 2023.
- Rajibul Shaikh. Testing black hole mimickers with the Event Horizon Telescope image of Sagittarius A*. Mon. Not. Roy. Astron. Soc., 523(1):375–384, 2023.
- Hunting extra dimensions in the shadow of Sgr A*. Phys. Rev. D, 106(8):084051, 2022.
- Gravitational lensing by black holes in the 4D4𝐷4D4 italic_D Einstein-Gauss-Bonnet gravity. JCAP, 09:030, 2020.
- Rotating black holes in 4D4𝐷4D4 italic_D Einstein-Gauss-Bonnet gravity and its shadow. JCAP, 07:053, 2020.
- Subrahmanyan Chandrasekhar. The mathematical theory of black holes. Oxford Classic Texts in the Physical Sciences. Clarendon Press, November 5, 1998.
- Testing Rotating Regular Metrics as Candidates for Astrophysical Black Holes. Astrophys. J., 896(1):89, 2020.
- Photon Regions and Shadows of Accelerated Black Holes. Int. J. Mod. Phys. D, 24(09):1542024, 2015.
- Shadows of accelerating black holes. Phys. Rev. D, 103(2):025005, 2021.
- Brandon Carter. Global structure of the Kerr family of gravitational fields. Phys. Rev., 174:1559–1571, 1968.
- Exact Space-Times in Einstein’s General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 2009.
- Shadows of Kerr black holes with and without scalar hair. Int. J. Mod. Phys. D, 25(09):1641021, 2016.
- Measurement of the Kerr Spin Parameter by Observation of a Compact Object’s Shadow. Phys. Rev. D, 80:024042, 2009.
- Silhouette of M87*: A New Window to Peek into the World of Hidden Dimensions. Phys. Rev. D, 101(4):041301, 2020.
- Testing the No-Hair Theorem with Observations in the Electromagnetic Spectrum: II. Black-Hole Images. Astrophys. J., 718:446–454, 2010.
- Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image. Phys. Rev. D, 100(4):044057, 2019.
- Kazunori Akiyama et al. First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophys. J. Lett., 930(2):L17, 2022.
- Prashant Kocherlakota et al. Constraints on black-hole charges with the 2017 EHT observations of M87*. Phys. Rev. D, 103(10):104047, 2021.
- Tuan Do et al. Relativistic redshift of the star S0-2 orbiting the Galactic center supermassive black hole. Science, 365(6454):664–668, 2019.
- R. Abuter et al. Mass distribution in the Galactic Center based on interferometric astrometry of multiple stellar orbits. Astron. Astrophys., 657:L12, 2022.
- R. Abuter et al. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys., 636:L5, 2020.
- A geometric distance measurement to the galactic center black hole with 0.3% uncertainty. A&A, 625:L10, 2019.