Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

De Leeuw representations of functionals on Lipschitz spaces (2403.09546v4)

Published 14 Mar 2024 in math.FA

Abstract: Let $\mathrm{Lip}_0(M)$ be the space of Lipschitz functions on a complete metric space $(M,d)$ that vanish at a point $0\in M$. We investigate its dual $\mathrm{Lip}_0(M)*$ using the de Leeuw transform, which allows representing each functional on $\mathrm{Lip}_0(M)$ as a (non-unique) measure on $\beta\widetilde{M}$, where $\widetilde{M}$ is the space of pairs $(x,y)\in M\times M$, $x\neq y$. We distinguish a set of points of $\beta\widetilde{M}$ that are "away from infinity", which can be assigned coordinates belonging to the Lipschitz realcompactification $M{\mathcal{R}}$ of $M$. We define a natural metric $\bar{d}$ on $M{\mathcal{R}}$ extending $d$ and we show that optimal (i.e. positive and norm-minimal) de Leeuw representations of well-behaved functionals are characterised by $\bar{d}$-cyclical monotonicity of their support, extending known results for functionals in $\mathcal{F}(M)$, the predual of $\mathrm{Lip}_0(M)$. We also extend the Kantorovich-Rubinstein theorem to normal Hausdorff spaces, in particular to $M{\mathcal{R}}$, and use this to characterise measure-induced and majorisable functionals in $\mathrm{Lip}_0(M)*$ as those admitting optimal representations with additional finiteness properties. Finally, we use de Leeuw representations to define a natural L-projection of $\mathrm{Lip}_0(M)*$ onto $\mathcal{F}(M)$ under some conditions on $M$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.