Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Observation of quantum thermalization restricted to Hilbert space fragments (2403.09517v2)

Published 14 Mar 2024 in quant-ph, cond-mat.quant-gas, physics.atom-ph, and cond-mat.stat-mech

Abstract: Quantum thermalization occurs in a broad class of systems from elementary particles to complex materials. Out-of-equilibrium quantum systems have long been understood to either thermalize or retain memory of their initial states, but not both. Here we achieve the first coexistence of thermalization and memory in a quantum system, where we use both Rydberg blockade and facilitation in an atom array to engineer a fragmentation of the Hilbert space into exponentially many disjointed subspaces. We find that the kinetically constrained system yields quantum many-body scars arising from the $\mathbb{Z}{2k}$ class of initial states, which generalizes beyond the $\mathbb{Z}{2}$ scars previously reported in other quantum systems. When bringing multiple long-range interactions into resonance, we observe quantum thermalization restricted to Hilbert space fragments, where the thermalized system retains characteristics of the initial configuration. Intriguingly, states belonging to different subspaces do not thermalize with each other even when they have the same energy. Our work challenges established ideas of quantum thermalization while experimentally resolving the longstanding tension between thermalization and memory. These results may be applied to control entanglement dynamics in quantum processors and quantum sensors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. V. Zelevinsky, Quantum chaos and complexity in nuclei, Annual Review of Nuclear and Particle Science 46, 237 (1996).
  2. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, Journal of high energy physics 2007, 120 (2007).
  3. J. Eisert, M. Friesdorf, and C. Gogolin, Quantum many-body systems out of equilibrium, Nature Physics 11, 124 (2015).
  4. J. M. Deutsch, Quantum statistical mechanics in a closed system, Physical Review A 43, 2046 (1991).
  5. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  6. T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum Newton’s cradle, Nature 440, 900 (2006).
  7. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).
  8. R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015).
  9. V. Khemani, M. Hermele, and R. Nandkishore, Localization from Hilbert space shattering: From theory to physical realizations, Physical Review B 101, 174204 (2020).
  10. S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
  11. S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation and commutant algebras, Physical Review X 12, 011050 (2022).
  12. C. Batista and G. Ortiz, Quantum phase diagram of the t−Jz𝑡subscript𝐽𝑧t-J_{z}italic_t - italic_J start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT chain model, Physical Review Letters 85, 4755 (2000).
  13. S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars in a Landau level on a thin torus, Physical Review B 102, 195150 (2020).
  14. Materials and methods are available as supplementary materials.
  15. X. Feng and B. Skinner, Hilbert space fragmentation produces an effective attraction between fractons, Physical Review Research 4, 013053 (2022).
  16. C. Chen, F. Burnell, and A. Chandran, How does a locally constrained quantum system localize?, Physical Review Letters 121, 085701 (2018).
  17. L. Herviou, J. H. Bardarson, and N. Regnault, Many-body localization in a fragmented Hilbert space, Physical Review B 103, 134207 (2021).
  18. R. Shen and C. H. Lee, Non-Hermitian skin clusters from strong interactions, Communications Physics 5, 238 (2022).
  19. D. Hahn, P. A. McClarty, and D. J. Luitz, Information dynamics in a model with Hilbert space fragmentation, SciPost Physics 11, 074 (2021).
  20. J. R. Johansson, P. D. Nation, and F. Nori, Qutip: An open-source python framework for the dynamics of open quantum systems, Computer Physics Communications 183, 1760 (2012).
Citations (2)

Summary

We haven't generated a summary for this paper yet.