Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Outlier Robust Multivariate Polynomial Regression (2403.09465v1)

Published 14 Mar 2024 in cs.DS, cs.LG, and stat.ML

Abstract: We study the problem of robust multivariate polynomial regression: let $p\colon\mathbb{R}n\to\mathbb{R}$ be an unknown $n$-variate polynomial of degree at most $d$ in each variable. We are given as input a set of random samples $(\mathbf{x}i,y_i) \in [-1,1]n \times \mathbb{R}$ that are noisy versions of $(\mathbf{x}_i,p(\mathbf{x}_i))$. More precisely, each $\mathbf{x}_i$ is sampled independently from some distribution $\chi$ on $[-1,1]n$, and for each $i$ independently, $y_i$ is arbitrary (i.e., an outlier) with probability at most $\rho < 1/2$, and otherwise satisfies $|y_i-p(\mathbf{x}_i)|\leq\sigma$. The goal is to output a polynomial $\hat{p}$, of degree at most $d$ in each variable, within an $\ell\infty$-distance of at most $O(\sigma)$ from $p$. Kane, Karmalkar, and Price [FOCS'17] solved this problem for $n=1$. We generalize their results to the $n$-variate setting, showing an algorithm that achieves a sample complexity of $O_n(dn\log d)$, where the hidden constant depends on $n$, if $\chi$ is the $n$-dimensional Chebyshev distribution. The sample complexity is $O_n(d{2n}\log d)$, if the samples are drawn from the uniform distribution instead. The approximation error is guaranteed to be at most $O(\sigma)$, and the run-time depends on $\log(1/\sigma)$. In the setting where each $\mathbf{x}_i$ and $y_i$ are known up to $N$ bits of precision, the run-time's dependence on $N$ is linear. We also show that our sample complexities are optimal in terms of $dn$. Furthermore, we show that it is possible to have the run-time be independent of $1/\sigma$, at the cost of a higher sample complexity.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com