Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shake to Leak: Fine-tuning Diffusion Models Can Amplify the Generative Privacy Risk (2403.09450v2)

Published 14 Mar 2024 in cs.LG and cs.CR

Abstract: While diffusion models have recently demonstrated remarkable progress in generating realistic images, privacy risks also arise: published models or APIs could generate training images and thus leak privacy-sensitive training information. In this paper, we reveal a new risk, Shake-to-Leak (S2L), that fine-tuning the pre-trained models with manipulated data can amplify the existing privacy risks. We demonstrate that S2L could occur in various standard fine-tuning strategies for diffusion models, including concept-injection methods (DreamBooth and Textual Inversion) and parameter-efficient methods (LoRA and Hypernetwork), as well as their combinations. In the worst case, S2L can amplify the state-of-the-art membership inference attack (MIA) on diffusion models by $5.4\%$ (absolute difference) AUC and can increase extracted private samples from almost $0$ samples to $15.8$ samples on average per target domain. This discovery underscores that the privacy risk with diffusion models is even more severe than previously recognized. Codes are available at https://github.com/VITA-Group/Shake-to-Leak.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 308–318.
  2. J. Abascal, S. Wu, A. Oprea, and J. Ullman, “Tmi! finetuned models leak private information from their pretraining data,” arXiv preprint arXiv:2306.01181, 2023.
  3. Andrew, “What are hypernetworks and the ones you should know,” 2023. [Online]. Available: https://stable-diffusion-art.com/hypernetwork/
  4. B. Bortolato, M. Ivanovska, P. Rot, J. Križaj, P. Terhörst, N. Damer, P. Peer, and V. Štruc, “Learning privacy-enhancing face representations through feature disentanglement,” in 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020).   IEEE, 2020, pp. 495–502.
  5. N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership inference attacks from first principles,” in 2022 IEEE Symposium on Security and Privacy (SP).   IEEE, 2022, pp. 1897–1914.
  6. N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. Tramer, B. Balle, D. Ippolito, and E. Wallace, “Extracting training data from diffusion models,” arXiv preprint arXiv:2301.13188, 2023.
  7. H. Duan, A. Dziedzic, N. Papernot, and F. Boenisch, “Flocks of stochastic parrots: Differentially private prompt learning for large language models,” arXiv preprint arXiv:2305.15594, 2023.
  8. J. Duan, F. Kong, S. Wang, X. Shi, and K. Xu, “Are diffusion models vulnerable to membership inference attacks?” in 40th International Conference on Machine Learning, 2023.
  9. C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3.   Springer, 2006, pp. 265–284.
  10. R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-Or, “An image is worth one word: Personalizing text-to-image generation using textual inversion,” arXiv preprint arXiv:2208.01618, 2022.
  11. S. Ghalebikesabi, L. Berrada, S. Gowal, I. Ktena, R. Stanforth, J. Hayes, S. De, S. L. Smith, O. Wiles, and B. Balle, “Differentially private diffusion models generate useful synthetic images,” arXiv preprint arXiv:2302.13861, 2023.
  12. A. Gupta, A. Jaiswal, Y. Wu, V. Yadav, and P. Natarajan, “Adversarial mask generation for preserving visual privacy,” in 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021).   IEEE, 2021, pp. 1–5.
  13. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
  14. J. Hong, J. T. Wang, C. Zhang, Z. Li, B. Li, and Z. Wang, “Dp-opt: Make large language model your privacy-preserving prompt engineer,” arXiv preprint arXiv:2312.03724, 2023.
  15. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” arXiv preprint arXiv:2106.09685, 2021.
  16. H. Hu and J. Pang, “Membership inference of diffusion models,” arXiv preprint arXiv:2301.09956, 2023.
  17. A. Hughes, “Midjourney: The gothic ai image generator challenging the art industry,” 2023. [Online]. Available: https://www.sciencefocus.com/future-technology/midjourney
  18. B. Isik and T. Weissman, “Learning under storage and privacy constraints,” in 2022 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2022, pp. 1844–1849.
  19. A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz, I. Hacihaliloglu, and D. Merhof, “Diffusion models for medical image analysis: A comprehensive survey,” arXiv preprint arXiv:2211.07804, 2022.
  20. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
  21. V. Mirjalili, S. Raschka, A. Namboodiri, and A. Ross, “Semi-adversarial networks: Convolutional autoencoders for imparting privacy to face images,” in 2018 International Conference on Biometrics (ICB).   IEEE, 2018, pp. 82–89.
  22. A. Panda, Z. Zhang, Y. Yang, and P. Mittal, “Teach gpt to phish,” in The Second Workshop on New Frontiers in Adversarial Machine Learning, 2023.
  23. D. H. Park, S. Azadi, X. Liu, T. Darrell, and A. Rohrbach, “Benchmark for compositional text-to-image synthesis,” in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.
  24. W. H. Pinaya, P.-D. Tudosiu, J. Dafflon, P. F. Da Costa, V. Fernandez, P. Nachev, S. Ourselin, and M. J. Cardoso, “Brain imaging generation with latent diffusion models,” in MICCAI Workshop on Deep Generative Models.   Springer, 2022, pp. 117–126.
  25. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning.   PMLR, 2021, pp. 8748–8763.
  26. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with clip latents,” arXiv preprint arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.
  27. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
  28. R. Rombach, A. Blattmann, and B. Ommer, “Text-guided synthesis of artistic images with retrieval-augmented diffusion models,” arXiv preprint arXiv:2207.13038, 2022.
  29. N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman, “Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22 500–22 510.
  30. C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans et al., “Photorealistic text-to-image diffusion models with deep language understanding,” Advances in Neural Information Processing Systems, vol. 35, pp. 36 479–36 494, 2022.
  31. C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman et al., “Laion-5b: An open large-scale dataset for training next generation image-text models,” Advances in Neural Information Processing Systems, vol. 35, pp. 25 278–25 294, 2022.
  32. G. Somepalli, V. Singla, M. Goldblum, J. Geiping, and T. Goldstein, “Diffusion art or digital forgery? investigating data replication in diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 6048–6058.
  33. Y. Wu, N. Yu, Z. Li, M. Backes, and Y. Zhang, “Membership inference attacks against text-to-image generation models,” arXiv preprint arXiv:2210.00968, 2022.
  34. D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni, Y. T. Lee, A. Manoel, L. Wutschitz et al., “Differentially private fine-tuning of language models,” arXiv preprint arXiv:2110.06500, 2021.
  35. S. Zanella-Béguelin, L. Wutschitz, S. Tople, A. Salem, V. Rühle, A. Paverd, M. Naseri, B. Köpf, and D. Jones, “Bayesian estimation of differential privacy,” in International Conference on Machine Learning.   PMLR, 2023, pp. 40 624–40 636.
  36. Y. Zhang, N. Huang, F. Tang, H. Huang, C. Ma, W. Dong, and C. Xu, “Inversion-based style transfer with diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 10 146–10 156.
Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com