Shake to Leak: Fine-tuning Diffusion Models Can Amplify the Generative Privacy Risk (2403.09450v2)
Abstract: While diffusion models have recently demonstrated remarkable progress in generating realistic images, privacy risks also arise: published models or APIs could generate training images and thus leak privacy-sensitive training information. In this paper, we reveal a new risk, Shake-to-Leak (S2L), that fine-tuning the pre-trained models with manipulated data can amplify the existing privacy risks. We demonstrate that S2L could occur in various standard fine-tuning strategies for diffusion models, including concept-injection methods (DreamBooth and Textual Inversion) and parameter-efficient methods (LoRA and Hypernetwork), as well as their combinations. In the worst case, S2L can amplify the state-of-the-art membership inference attack (MIA) on diffusion models by $5.4\%$ (absolute difference) AUC and can increase extracted private samples from almost $0$ samples to $15.8$ samples on average per target domain. This discovery underscores that the privacy risk with diffusion models is even more severe than previously recognized. Codes are available at https://github.com/VITA-Group/Shake-to-Leak.
- M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 308–318.
- J. Abascal, S. Wu, A. Oprea, and J. Ullman, “Tmi! finetuned models leak private information from their pretraining data,” arXiv preprint arXiv:2306.01181, 2023.
- Andrew, “What are hypernetworks and the ones you should know,” 2023. [Online]. Available: https://stable-diffusion-art.com/hypernetwork/
- B. Bortolato, M. Ivanovska, P. Rot, J. Križaj, P. Terhörst, N. Damer, P. Peer, and V. Štruc, “Learning privacy-enhancing face representations through feature disentanglement,” in 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020). IEEE, 2020, pp. 495–502.
- N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership inference attacks from first principles,” in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 1897–1914.
- N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. Tramer, B. Balle, D. Ippolito, and E. Wallace, “Extracting training data from diffusion models,” arXiv preprint arXiv:2301.13188, 2023.
- H. Duan, A. Dziedzic, N. Papernot, and F. Boenisch, “Flocks of stochastic parrots: Differentially private prompt learning for large language models,” arXiv preprint arXiv:2305.15594, 2023.
- J. Duan, F. Kong, S. Wang, X. Shi, and K. Xu, “Are diffusion models vulnerable to membership inference attacks?” in 40th International Conference on Machine Learning, 2023.
- C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3. Springer, 2006, pp. 265–284.
- R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-Or, “An image is worth one word: Personalizing text-to-image generation using textual inversion,” arXiv preprint arXiv:2208.01618, 2022.
- S. Ghalebikesabi, L. Berrada, S. Gowal, I. Ktena, R. Stanforth, J. Hayes, S. De, S. L. Smith, O. Wiles, and B. Balle, “Differentially private diffusion models generate useful synthetic images,” arXiv preprint arXiv:2302.13861, 2023.
- A. Gupta, A. Jaiswal, Y. Wu, V. Yadav, and P. Natarajan, “Adversarial mask generation for preserving visual privacy,” in 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021). IEEE, 2021, pp. 1–5.
- J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
- J. Hong, J. T. Wang, C. Zhang, Z. Li, B. Li, and Z. Wang, “Dp-opt: Make large language model your privacy-preserving prompt engineer,” arXiv preprint arXiv:2312.03724, 2023.
- E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” arXiv preprint arXiv:2106.09685, 2021.
- H. Hu and J. Pang, “Membership inference of diffusion models,” arXiv preprint arXiv:2301.09956, 2023.
- A. Hughes, “Midjourney: The gothic ai image generator challenging the art industry,” 2023. [Online]. Available: https://www.sciencefocus.com/future-technology/midjourney
- B. Isik and T. Weissman, “Learning under storage and privacy constraints,” in 2022 IEEE International Symposium on Information Theory (ISIT). IEEE, 2022, pp. 1844–1849.
- A. Kazerouni, E. K. Aghdam, M. Heidari, R. Azad, M. Fayyaz, I. Hacihaliloglu, and D. Merhof, “Diffusion models for medical image analysis: A comprehensive survey,” arXiv preprint arXiv:2211.07804, 2022.
- D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412.6980, 2014.
- V. Mirjalili, S. Raschka, A. Namboodiri, and A. Ross, “Semi-adversarial networks: Convolutional autoencoders for imparting privacy to face images,” in 2018 International Conference on Biometrics (ICB). IEEE, 2018, pp. 82–89.
- A. Panda, Z. Zhang, Y. Yang, and P. Mittal, “Teach gpt to phish,” in The Second Workshop on New Frontiers in Adversarial Machine Learning, 2023.
- D. H. Park, S. Azadi, X. Liu, T. Darrell, and A. Rohrbach, “Benchmark for compositional text-to-image synthesis,” in Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.
- W. H. Pinaya, P.-D. Tudosiu, J. Dafflon, P. F. Da Costa, V. Fernandez, P. Nachev, S. Ourselin, and M. J. Cardoso, “Brain imaging generation with latent diffusion models,” in MICCAI Workshop on Deep Generative Models. Springer, 2022, pp. 117–126.
- A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning. PMLR, 2021, pp. 8748–8763.
- A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with clip latents,” arXiv preprint arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.
- R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 10 684–10 695.
- R. Rombach, A. Blattmann, and B. Ommer, “Text-guided synthesis of artistic images with retrieval-augmented diffusion models,” arXiv preprint arXiv:2207.13038, 2022.
- N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman, “Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22 500–22 510.
- C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans et al., “Photorealistic text-to-image diffusion models with deep language understanding,” Advances in Neural Information Processing Systems, vol. 35, pp. 36 479–36 494, 2022.
- C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman et al., “Laion-5b: An open large-scale dataset for training next generation image-text models,” Advances in Neural Information Processing Systems, vol. 35, pp. 25 278–25 294, 2022.
- G. Somepalli, V. Singla, M. Goldblum, J. Geiping, and T. Goldstein, “Diffusion art or digital forgery? investigating data replication in diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 6048–6058.
- Y. Wu, N. Yu, Z. Li, M. Backes, and Y. Zhang, “Membership inference attacks against text-to-image generation models,” arXiv preprint arXiv:2210.00968, 2022.
- D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni, Y. T. Lee, A. Manoel, L. Wutschitz et al., “Differentially private fine-tuning of language models,” arXiv preprint arXiv:2110.06500, 2021.
- S. Zanella-Béguelin, L. Wutschitz, S. Tople, A. Salem, V. Rühle, A. Paverd, M. Naseri, B. Köpf, and D. Jones, “Bayesian estimation of differential privacy,” in International Conference on Machine Learning. PMLR, 2023, pp. 40 624–40 636.
- Y. Zhang, N. Huang, F. Tang, H. Huang, C. Ma, W. Dong, and C. Xu, “Inversion-based style transfer with diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 10 146–10 156.