Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Emergent time scales of epistasis in protein evolution (2403.09436v3)

Published 14 Mar 2024 in q-bio.BM, cond-mat.dis-nn, and q-bio.PE

Abstract: We introduce a data-driven epistatic model of protein evolution, capable of generating evolutionary trajectories spanning very different time scales reaching from individual mutations to diverged homologs. Our in silico evolution encompasses random nucleotide mutations, insertions and deletions, and models selection using a fitness landscape, which is inferred via a generative probabilistic model for protein families. We show that the proposed framework accurately reproduces the sequence statistics of both short-time (experimental) and long-time (natural) protein evolution, suggesting applicability also to relatively data-poor intermediate evolutionary time scales, which are currently inaccessible to evolution experiments. Our model uncovers a highly collective nature of epistasis, gradually changing the fitness effect of mutations in a diverging sequence context, rather than acting via strong interactions between individual mutations. This collective nature triggers the emergence of a long evolutionary time scale, separating fast mutational processes inside a given sequence context, from the slow evolution of the context itself. The model quantitatively reproduces epistatic phenomena such as contingency and entrenchment, as well as the loss of predictability in protein evolution observed in deep mutational scanning experiments of distant homologs. It thereby deepens our understanding of the interplay between mutation and selection in shaping protein diversity and novel functions, allows one to statistically forecast evolution, and challenges the prevailing independent-site models of protein evolution, which are unable to capture the fundamental importance of epistasis.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Uniprot: the universal protein knowledgebase in 2023, Nucleic Acids Research 51, D523 (2023).
  2. D. M. Fowler and S. Fields, Deep mutational scanning: a new style of protein science, Nature methods 11, 801 (2014).
  3. J. A. G. De Visser and J. Krug, Empirical fitness landscapes and the predictability of evolution, Nature Reviews Genetics 15, 480 (2014).
  4. T. N. Starr and J. W. Thornton, Epistasis in protein evolution, Protein science 25, 1204 (2016).
  5. M. S. Johnson, G. Reddy, and M. M. Desai, Epistasis and evolution: recent advances and an outlook for prediction, BMC biology 21, 120 (2023).
  6. F. J. Poelwijk, M. Socolich, and R. Ranganathan, Learning the pattern of epistasis linking genotype and phenotype in a protein, Nature communications 10, 4213 (2019).
  7. J. Domingo, P. Baeza-Centurion, and B. Lehner, The causes and consequences of genetic interactions (epistasis), Annual review of genomics and human genetics 20, 433 (2019).
  8. Y. Park, B. P. Metzger, and J. W. Thornton, Epistatic drift causes gradual decay of predictability in protein evolution, Science 376, 823 (2022).
  9. O. Rivoire, K. A. Reynolds, and R. Ranganathan, Evolution-based functional decomposition of proteins, PLoS computational biology 12, e1004817 (2016).
  10. F. J. Poelwijk, V. Krishna, and R. Ranganathan, The context-dependence of mutations: a linkage of formalisms, PLoS computational biology 12, e1004771 (2016).
  11. G. Reddy and M. M. Desai, Global epistasis emerges from a generic model of a complex trait, Elife 10, e64740 (2021).
  12. J. Otwinowski, Biophysical inference of epistasis and the effects of mutations on protein stability and function, Molecular biology and evolution 35, 2345 (2018).
  13. G. F. Joyce, Forty years of in vitro evolution, Angewandte Chemie International Edition 46, 6420 (2007).
  14. T. Matsuura and T. Yomo, In vitro evolution of proteins, Journal of bioscience and bioengineering 101, 449 (2006).
  15. P. A. Romero and F. H. Arnold, Exploring protein fitness landscapes by directed evolution, Nature reviews Molecular cell biology 10, 866 (2009).
  16. M. Figliuzzi, P. Barrat-Charlaix, and M. Weigt, How pairwise coevolutionary models capture the collective residue variability in proteins?, Molecular biology and evolution 35, 1018 (2018).
  17. P. Tian and R. B. Best, Exploring the sequence fitness landscape of a bridge between protein folds, PLoS computational biology 16, e1008285 (2020).
  18. E. Mauri, S. Cocco, and R. Monasson, Mutational paths with sequence-based models of proteins: from sampling to mean-field characterization, Physical Review Letters 130, 158402 (2023).
  19. L. Vigué and O. Tenaillon, Predicting the effect of mutations to investigate recent events of selection across 60,472 escherichia coli strains, Proceedings of the National Academy of Sciences 120, e2304177120 (2023).
  20. P. Barrat-Charlaix, M. Figliuzzi, and M. Weigt, Improving landscape inference by integrating heterogeneous data in the inverse ising problem, Scientific Reports 6, 37812 (2016).
  21. P. A. Gunnarsson and M. M. Babu, Predicting evolutionary outcomes through the probability of accessing sequence variants, Science Advances 9, eade2903 (2023).
  22. J. Felsenstein, Inferring phylogenies (Oxford University Press, 2003).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com