Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation (2403.09392v1)

Published 14 Mar 2024 in eess.IV and cs.CV

Abstract: Dynamic Range (DR) is a pivotal characteristic of imaging systems. Current frame-based cameras struggle to achieve high dynamic range imaging due to the conflict between globally uniform exposure and spatially variant scene illumination. In this paper, we propose AsynHDR, a Pixel-Asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging and the unique event-generating mechanism of Dynamic Vision Sensors (DVS). Our proposed AsynHDR system integrates the DVS with a set of LCD panels. The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams. The HDR image is subsequently decoded from the event streams through our temporal-weighted algorithm. Experiments under standard test platform and several challenging scenes have verified the feasibility of the system in HDR imaging task.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs,” in ACM SIGGRAPH 2008 classes, (2008).
  2. T. Jinno and M. Okuda, “Multiple exposure fusion for high dynamic range image acquisition,” \JournalTitleIEEE Transactions on image processing 21, 358–365 (2011).
  3. S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski, “High dynamic range video,” \JournalTitleACM Transactions on Graphics (TOG) 22, 319–325 (2003).
  4. M. Mase, S. Kawahito, M. Sasaki, et al., “A wide dynamic range cmos image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic a/d converters,” \JournalTitleIEEE Journal of Solid-State Circuits 40, 2787–2795 (2005).
  5. S. W. Hasinoff, D. Sharlet, R. Geiss, et al., “Burst photography for high dynamic range and low-light imaging on mobile cameras,” \JournalTitleACM Transactions on Graphics (ToG) 35, 1–12 (2016).
  6. S. W. Hasinoff and K. N. Kutulakos, “Multiple-aperture photography for high dynamic range and post-capture refocusing,” \JournalTitleIEEE Transactions on Pattern Analysis and Machine Intelligence 1, 3–1 (2009).
  7. M. A. Martínez, E. M. Valero, and J. Hernández-Andrés, “Adaptive exposure estimation for high dynamic range imaging applied to natural scenes and daylight skies,” \JournalTitleApplied optics 54, B241–B250 (2015).
  8. M. D. Tocci, C. Kiser, N. Tocci, and P. Sen, “A versatile hdr video production system,” \JournalTitleACM Transactions on Graphics (TOG) 30, 1–10 (2011).
  9. S. Hajisharif, J. Kronander, and J. Unger, “Adaptive dualiso hdr reconstruction,” \JournalTitleEURASIP Journal on Image and Video Processing 2015, 1–13 (2015).
  10. A. Srikantha and D. Sidibé, “Ghost detection and removal for high dynamic range images: Recent advances,” \JournalTitleSignal Processing: Image Communication p. 650–662 (2012).
  11. S. Silk and J. Lang, “High dynamic range image deghosting by fast approximate background modelling,” \JournalTitleComputers & Graphics 36, 1060–1071 (2012).
  12. K. Karađuzović-Hadžiabdić, J. H. Telalović, and R. K. Mantiuk, “Assessment of multi-exposure hdr image deghosting methods,” \JournalTitleComputers & Graphics 63, 1–17 (2017).
  13. T. Yamashita and Y. Fujita, “Hdr video capturing system with four image sensors,” \JournalTitleITE Transactions on Media Technology and Applications 5, 141–146 (2017).
  14. K. Seshadrinathan and O. Nestares, “High dynamic range imaging using camera arrays,” in 2017 IEEE International Conference on Image Processing (ICIP), (IEEE, 2017), pp. 725–729.
  15. T. T. Huynh, T.-D. Nguyen, M.-T. Vo, and S. V. Dao, “High dynamic range imaging using a 2x2 camera array with polarizing filters,” in 2019 19th International Symposium on Communications and Information Technologies (ISCIT), (IEEE, 2019), pp. 183–187.
  16. S. Nayar and T. Mitsunaga, “High dynamic range imaging: spatially varying pixel exposures,” in Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), (2002).
  17. M. Saxena, G. Eluru, and S. S. Gorthi, “Structured illumination microscopy,” \JournalTitleAdvances in Optics and Photonics 7, 241–275 (2015).
  18. A. A. Adeyemi, N. Barakat, and T. E. Darcie, “Applications of digital micro-mirror devices to digital optical microscope dynamic range enhancement,” \JournalTitleOptics express 17, 1831–1843 (2009).
  19. N. A. Riza and J. P. La Torre, “Demonstration of 136 db dynamic range capability for a simultaneous dual optical band caos camera,” \JournalTitleOptics Express 24, 29427–29443 (2016).
  20. W. Feng, F. Zhang, X. Qu, and S. Zheng, “Per-pixel coded exposure for high-speed and high-resolution imaging using a digital micromirror device camera,” \JournalTitleSensors 16, 331 (2016).
  21. M. A. Mazhar and N. A. Riza, “96 db linear high dynamic range caos spectrometer demonstration,” \JournalTitleIEEE Photonics Technology Letters 32, 1497–1500 (2020).
  22. X. Guan, X. Qu, B. Niu, et al., “Pixel-level mapping method in high dynamic range imaging system based on dmd modulation,” \JournalTitleOptics Communications 499, 127278 (2021).
  23. S. K. Nayar, V. Branzoi, and T. E. Boult, “Programmable imaging: Towards a flexible camera,” \JournalTitleInternational Journal of Computer Vision 70, 7–22 (2006).
  24. Y. Qiao, X. Xu, T. Liu, and Y. Pan, “Design of a high-numerical-aperture digital micromirror device camera with high dynamic range,” \JournalTitleApplied optics 54, 60–70 (2015).
  25. J. Zhou, Y. Qiao, Z. Sun, et al., “Design of a dual dmds camera for high dynamic range imaging,” \JournalTitleOptics Communications 452, 140–145 (2019).
  26. W. Feng, F. Zhang, W. Wang, et al., “Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging,” \JournalTitleApplied Optics 56, 3831–3840 (2017).
  27. H. Mannami, R. Sagawa, Y. Mukaigawa, et al., “Adaptive dynamic range camera with reflective liquid crystal,” \JournalTitleJournal of Visual Communication and Image Representation 18, 359–365 (2007).
  28. Nayar and Branzoi, “Adaptive dynamic range imaging: Optical control of pixel exposures over space and time,” in Proceedings Ninth IEEE International Conference on Computer Vision, (IEEE, 2003), pp. 1168–1175.
  29. H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “Events-to-video: Bringing modern computer vision to event cameras,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019).
  30. Y. Yang, J. Han, J. Liang, et al., “Learning event guided high dynamic range video reconstruction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2023), pp. 13924–13934.
  31. J. Han, Y. Asano, B. Shi, et al., “High-fidelity event-radiance recovery via transient event frequency,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2023), pp. 20616–20625.
  32. M. Muglikar, G. Gallego, and D. Scaramuzza, “Esl: Event-based structured light,” in 2021 International Conference on 3D Vision (3DV), (IEEE, 2021), pp. 1165–1174.
  33. T. Takatani, Y. Ito, A. Ebisu, et al., “Event-based bispectral photometry using temporally modulated illumination,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, (2021), pp. 15638–15647.
  34. X. Huang, Y. Zhang, and Z. Xiong, “High-speed structured light based 3d scanning using an event camera,” \JournalTitleOptics Express 29, 35864–35876 (2021).
  35. X. Liu, J. D. Rego, S. Jayasuriya, and S. J. Koppal, “Event-based dual photography for transparent scene reconstruction,” \JournalTitleOptics Letters 48, 1304–1307 (2023).
  36. J. Fu, Y. Zhang, Y. Li, et al., “Fast 3d reconstruction via event-based structured light with spatio-temporal coding,” \JournalTitleOptics Express 31, 44588–44602 (2023).
  37. Z. Wang, Y. Ng, P. van Goor, and R. Mahony, “Event camera calibration of per-pixel biased contrast threshold,” \JournalTitlearXiv preprint arXiv:2012.09378 (2020).
Citations (2)

Summary

We haven't generated a summary for this paper yet.