Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A hollow-core fiber based stand-alone multimodal (2-photon, 3-photon, SHG, THG) nonlinear flexible imaging endoscope (2403.09391v1)

Published 14 Mar 2024 in physics.optics and physics.med-ph

Abstract: Multimodal nonlinear endoscopes have been a topic of intense research over the past two decades, enabling sub-cellular and label-free imaging in areas not reachable with table-top microscopes. They are sophisticated systems that can be implemented on an optical table in a lab environment, but they cannot be easily moved within or out of the lab. We present here a multimodal and flexible nonlinear endoscope system able to perform two photon excited fluorescence and second harmonic generation imaging with a stand-alone and moveable kart integrating a compact ultrashort laser source. In addition, the system can perform three photon excited fluorescence and third harmonic generation thanks to a delivery optical fiber used to deliver ultrashort pulses from massive and not movable laser systems into the stand-alone kart. The endoscopic fiber probes and delivery optical fibers are based on functionalized negative curvature hollow core fibers. The endoscope distal head has a diameter <2.2mm and can perform nonlinear imaging at max 10 frames/s over a field of view up to 600 $\mu$m with a ~1 $\mu$m spatial resolution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live Tissue Intrinsic Emission Microscopy Using Multiphoton-Excited Native Fluorescence and Second Harmonic Generation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 7075–7080, 2003, publisher: National Academy of Sciences. [Online]. Available: https://www.jstor.org/stable/3139434
  2. C. J. R. Sheppard, “Multiphoton microscopy: a personal historical review, with some future predictions,” Journal of Biomedical Optics, vol. 25, no. 1, p. 014511, Jan. 2020, publisher: SPIE. [Online]. Available: https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-25/issue-1/014511/Multiphoton-microscopy--a-personal-historical-review-with-some-future/10.1117/1.JBO.25.1.014511.full
  3. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Review of Scientific Instruments, vol. 80, no. 8, p. 081101, Aug. 2009. [Online]. Available: https://doi.org/10.1063/1.3184828
  4. D. R. Miller, J. W. Jarrett, A. M. Hassan, and A. K. Dunn, “Deep tissue imaging with multiphoton fluorescence microscopy,” Current Opinion in Biomedical Engineering, vol. 4, pp. 32–39, Dec. 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2468451117300466
  5. A. Diaspro, P. Bianchini, G. Vicidomini, M. Faretta, P. Ramoino, and C. Usai, “Multi-photon excitation microscopy,” BioMedical Engineering OnLine, vol. 5, no. 1, p. 36, Jun. 2006. [Online]. Available: https://doi.org/10.1186/1475-925X-5-36
  6. H. Ranawat, S. Pal, and N. Mazumder, “Recent trends in two-photon auto-fluorescence lifetime imaging (2P-FLIM) and its biomedical applications,” Biomedical Engineering Letters, vol. 9, no. 3, pp. 293–310, Aug. 2019.
  7. A. Aghigh, S. Bancelin, M. Rivard, M. Pinsard, H. Ibrahim, and F. Légaré, “Second harmonic generation microscopy: a powerful tool for bio-imaging,” Biophysical Reviews, vol. 15, no. 1, pp. 43–70, Feb. 2023.
  8. B. Weigelin, G.-J. Bakker, and P. Friedl, “Third harmonic generation microscopy of cells and tissue organization,” Journal of Cell Science, vol. 129, no. 2, pp. 245–255, Jan. 2016.
  9. W. Min, S. Lu, M. Rueckel, G. R. Holtom, and X. S. Xie, “Near-Degenerate Four-Wave-Mixing Microscopy,” Nano Letters, vol. 9, no. 6, pp. 2423–2426, Jun. 2009, publisher: American Chemical Society. [Online]. Available: https://doi.org/10.1021/nl901101g
  10. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent Nonlinear Optical Imaging: Beyond Fluorescence Microscopy,” Annual Review of Physical Chemistry, vol. 62, no. 1, pp. 507–530, 2011, _eprint: https://doi.org/10.1146/annurev.physchem.012809.103512. [Online]. Available: https://doi.org/10.1146/annurev.physchem.012809.103512
  11. H. Rigneault and P. Berto, “Tutorial: Coherent Raman light matter interaction processes,” APL Photonics, vol. 3, no. 9, p. 091101, Jul. 2018. [Online]. Available: https://doi.org/10.1063/1.5030335
  12. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Review of Scientific Instruments, vol. 87, no. 3, p. 031101, Mar. 2016. [Online]. Available: https://doi.org/10.1063/1.4943211
  13. H. Ishii, K. Otomo, T. Takahashi, K. Yamaguchi, and T. Nemoto, “Focusing new light on brain functions: multiphoton microscopy for deep and super-resolution imaging,” Neuroscience Research, vol. 179, pp. 24–30, Jun. 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0168010221002455
  14. K. König, “Multiphoton microscopy in life sciences,” Journal of Microscopy, vol. 200, no. 2, pp. 83–104, 2000, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2818.2000.00738.x. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2818.2000.00738.x
  15. B.-G. Wang, K. König, and K.-J. Halbhuber, “Two-photon microscopy of deep intravital tissues and its merits in clinical research,” Journal of Microscopy, vol. 238, no. 1, pp. 1–20, 2010, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2818.2009.03330.x. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.2009.03330.x
  16. D. A. Orringer, B. Pandian, Y. S. Niknafs, T. C. Hollon, J. Boyle, S. Lewis, M. Garrard, S. L. Hervey-Jumper, H. J. L. Garton, C. O. Maher, J. A. Heth, O. Sagher, D. A. Wilkinson, M. Snuderl, S. Venneti, S. H. Ramkissoon, K. A. McFadden, A. Fisher-Hubbard, A. P. Lieberman, T. D. Johnson, X. S. Xie, J. K. Trautman, C. W. Freudiger, and S. Camelo-Piragua, “Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy,” Nature Biomedical Engineering, vol. 1, no. 2, pp. 1–13, Feb. 2017, number: 2 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41551-016-0027
  17. S. Yue, M. Slipchenko, and J.-X. Cheng, “Multimodal nonlinear optical microscopy,” Laser & Photonics Reviews, vol. 5, no. 4, pp. 496–512, 2011, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/lpor.201000027. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201000027
  18. S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” Journal of biomedical optics, vol. 14, no. 3, p. 034005, 2009. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2866630/
  19. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Optics Letters, vol. 31, no. 8, pp. 1076–1078, Apr. 2006, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/ol/abstract.cfm?uri=ol-31-8-1076
  20. D. Do, H. Yoo, and D.-G. Gweon, “Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator,” Journal of Biomedical Optics, vol. 19, no. 6, p. 066010, Jun. 2014.
  21. D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Use of a lensed fiber for a large-field-of-view, high-resolution, fiber-scanning microendoscope,” Optics Letters, vol. 37, no. 5, pp. 881–883, Mar. 2012, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/ol/abstract.cfm?uri=ol-37-5-881
  22. A. Lukic, S. Dochow, H. Bae, G. Matz, I. Latka, B. Messerschmidt, M. Schmitt, and J. Popp, “Endoscopic fiber probe for nonlinear spectroscopic imaging,” Optica, vol. 4, no. 5, pp. 496–501, May 2017, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/optica/abstract.cfm?uri=optica-4-5-496
  23. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Optics Express, vol. 17, no. 10, pp. 7907–7915, May 2009, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?uri=oe-17-10-7907
  24. K. Murari, Y. Zhang, S. Li, Y. Chen, M.-J. Li, and X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μ𝜇\muitalic_μm,” Optics Letters, vol. 36, no. 7, pp. 1299–1301, Apr. 2011, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/ol/abstract.cfm?uri=ol-36-7-1299
  25. G. Ducourthial, P. Leclerc, T. Mansuryan, M. Fabert, J. Brevier, R. Habert, F. Braud, R. Batrin, C. Vever-Bizet, G. Bourg-Heckly, L. Thiberville, A. Druilhe, A. Kudlinski, and F. Louradour, “Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal,” Scientific Reports, vol. 5, no. 1, p. 18303, Dec. 2015, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/srep18303
  26. A. Lombardini, V. Mytskaniuk, S. Sivankutty, E. R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski, and H. Rigneault, “High-resolution multimodal flexible coherent Raman endoscope,” Light: Science & Applications, vol. 7, no. 1, p. 10, May 2018, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41377-018-0003-3
  27. A. Kudlinski, A. Cassez, O. Vanvincq, D. Septier, A. Pastre, R. Habert, K. Baudelle, M. Douay, V. Mytskaniuk, V. Tsvirkun, H. Rigneault, and G. Bouwmans, “Double clad tubular anti-resonant hollow core fiber for nonlinear microendoscopy,” Optics Express, vol. 28, no. 10, pp. 15 062–15 070, May 2020, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?uri=oe-28-10-15062
  28. E. Pshenay-Severin, H. Bae, K. Reichwald, G. Matz, J. Bierlich, J. Kobelke, A. Lorenz, A. Schwuchow, T. Meyer-Zedler, M. Schmitt, B. Messerschmidt, and J. Popp, “Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept,” Light: Science & Applications, vol. 10, no. 1, p. 207, Oct. 2021, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41377-021-00648-w
  29. D. Septier, V. Mytskaniuk, R. Habert, D. Labat, K. Baudelle, A. Cassez, G. Brévalle-Wasilewski, M. Conforti, G. Bouwmans, H. Rigneault, and A. Kudlinski, “Label-free highly multimodal nonlinear endoscope,” Optics Express, vol. 30, no. 14, pp. 25 020–25 033, Jul. 2022, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?uri=oe-30-14-25020
  30. D. Y. Kim, K. Hwang, J. Ahn, Y.-H. Seo, J.-B. Kim, S. Lee, J.-H. Yoon, E. Kong, Y. Jeong, S. Jon, P. Kim, and K.-H. Jeong, “Lissajous Scanning Two-photon Endomicroscope for In vivo Tissue Imaging,” Scientific Reports, vol. 9, no. 1, p. 3560, Mar. 2019, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41598-019-38762-w
  31. Y. Zhang, M. L. Akins, K. Murari, J. Xi, M.-J. Li, K. Luby-Phelps, M. Mahendroo, and X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proceedings of the National Academy of Sciences, vol. 109, no. 32, pp. 12 878–12 883, Aug. 2012, publisher: Proceedings of the National Academy of Sciences. [Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.1121495109
  32. Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Biomedical Optics Express, vol. 1, no. 4, pp. 1159–1172, Nov. 2010, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/boe/abstract.cfm?uri=boe-1-4-1159
  33. F. Akhoundi, Y. Qin, N. Peyghambarian, J. K. Barton, and K. Kieu, “Compact fiber-based multi-photon endoscope working at 1700 nm,” Biomedical Optics Express, vol. 9, no. 5, pp. 2326–2335, May 2018, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/boe/abstract.cfm?uri=boe-9-5-2326
  34. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Optics Express, vol. 14, no. 3, pp. 1027–1032, Feb. 2006, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?uri=oe-14-3-1027
  35. Y.-C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber,” Optics Express, vol. 16, no. 17, pp. 12 640–12 649, Aug. 2008, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/oe/abstract.cfm?uri=oe-16-17-12640
  36. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proceedings of the National Academy of Sciences, vol. 108, no. 43, pp. 17 598–17 603, Oct. 2011, publisher: Proceedings of the National Academy of Sciences. [Online]. Available: https://www.pnas.org/doi/full/10.1073/pnas.1114746108
  37. A. Li, H. Guan, H.-C. Park, Y. Yue, D. Chen, W. Liang, M.-J. Li, H. Lu, and X. Li, “Twist-free ultralight two-photon fiberscope enabling neuroimaging on freely rotating/walking mice,” Optica, vol. 8, no. 6, pp. 870–879, Jun. 2021, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/optica/abstract.cfm?uri=optica-8-6-870
  38. V. Kučikas, M. P. Werner, T. Schmitz-Rode, F. Louradour, and M. A. M. J. van Zandvoort, “Two-Photon Endoscopy: State of the Art and Perspectives,” Molecular Imaging and Biology, vol. 25, no. 1, pp. 3–17, Feb. 2023. [Online]. Available: https://doi.org/10.1007/s11307-021-01665-2
  39. A. Klioutchnikov, D. J. Wallace, M. H. Frosz, R. Zeltner, J. Sawinski, V. Pawlak, K.-M. Voit, P. S. J. Russell, and J. N. D. Kerr, “Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats,” Nature Methods, vol. 17, no. 5, pp. 509–513, May 2020, number: 5 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41592-020-0817-9
  40. D. M. Huland, K. Charan, D. G. Ouzounov, J. S. Jones, N. Nishimura, and C. Xu, “Three-photon excited fluorescence imaging of unstained tissue using a GRIN lens endoscope,” Biomedical Optics Express, vol. 4, no. 5, pp. 652–658, May 2013, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/boe/abstract.cfm?uri=boe-4-5-652
  41. A. N. Kolyadin, G. K. Alagashev, A. D. Pryamikov, L. Mouradian, A. Zeytunyan, H. Toneyan, A. F. Kosolapov, and I. A. Bufetov, “Negative Curvature Hollow-core Fibers: Dispersion Properties and Femtosecond Pulse Delivery,” Physics Procedia, vol. 73, pp. 59–66, Jan. 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1875389215012924
  42. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Advances in Optics and Photonics, vol. 9, no. 3, pp. 504–561, Sep. 2017, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/aop/abstract.cfm?uri=aop-9-3-504
  43. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica, vol. 4, no. 2, pp. 209–217, Feb. 2017, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/optica/abstract.cfm?uri=optica-4-2-209
  44. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE Journal of Quantum Electronics, vol. 17, no. 3, pp. 404–407, Mar. 1981, conference Name: IEEE Journal of Quantum Electronics. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/1071115
  45. M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Scientific Reports, vol. 7, no. 1, p. 11761, Sep. 2017, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41598-017-12234-5
  46. K. Iga, “Theory for gradient-index imaging,” Applied Optics, vol. 19, no. 7, pp. 1039–1043, Apr. 1980, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/ao/abstract.cfm?uri=ao-19-7-1039
  47. J. P. Thirion, “Image matching as a diffusion process: an analogy with Maxwell’s demons,” Medical Image Analysis, vol. 2, no. 3, pp. 243–260, Sep. 1998. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1361841598800224
  48. H.-C. Park, H. Guan, A. Li, Y. Yue, M.-J. Li, H. Lu, and X. Li, “High-speed fiber-optic scanning nonlinear endomicroscopy for imaging neuron dynamics in vivo,” Optics Letters, vol. 45, no. 13, pp. 3605–3608, Jul. 2020, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/ol/abstract.cfm?uri=ol-45-13-3605
  49. Y. Wu, Y. Zhang, J. Xi, M.-J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” Journal of Biomedical Optics, vol. 15, no. 6, p. 060506, Nov. 2010, publisher: SPIE. [Online]. Available: https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-15/issue-6/060506/Fiber-optic-nonlinear-endomicroscopy-with-focus-scanning-by-using-shape/10.1117/1.3523234.full
  50. A. Li, W. Liang, H. Guan, Y.-T. A. Gau, D. E. Bergles, and X. Li, “Focus scanning with feedback-control for fiber-optic nonlinear endomicroscopy,” Biomedical Optics Express, vol. 8, no. 5, pp. 2519–2527, May 2017, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/boe/abstract.cfm?uri=boe-8-5-2519
  51. A. Lombardini, E. R. Andresen, A. Kudlinski, I. Rimke, and H. Rigneault, “Origin and suppression of parasitic signals in Kagomé lattice hollow core fibers used for SRS microscopy and endoscopy,” Optics Letters, vol. 42, no. 9, pp. 1824–1827, May 2017, publisher: Optica Publishing Group. [Online]. Available: https://opg.optica.org/ol/abstract.cfm?uri=ol-42-9-1824

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com