Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synchronized states of power grids and oscillator networks by convex optimization (2403.09185v1)

Published 14 Mar 2024 in eess.SY, cs.SY, and nlin.AO

Abstract: Synchronization is essential for the operation of AC power systems: All generators in the power grid must rotate with fixed relative phases to enable a steady flow of electric power. Understanding the conditions for and the limitations of synchronization is of utmost practical importance. In this article, we propose a novel approach to compute and analyze the stable stationary states of a power grid or an oscillator network in terms of a convex optimization problem. This approach allows to systematically compute \emph{all} stable states where the phase difference across an edge does not exceed $\pi/2$.Furthermore, the optimization formulation allows to rigorously establish certain properties of synchronized states and to bound the error in the widely used linear power flow approximation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Union for the Coordination of Transmission of Electricity, “Final report on the system disturbance on 4 november 2006,” https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-Report-20070130.pdf (2007).
  2. Y. Kuramoto, in International symposium on mathematical problems in theoretical physics (Springer, 1975) pp. 420–422.
  3. F. Dörfler and F. Bullo, Automatica 50, 1539 (2014).
  4. S. Jafarpour and F. Bullo, IEEE Transactions on Automatic Control 64, 2830 (2018).
  5. F. Dorfler and F. Bullo, IEEE Transactions on Circuits and Systems I: Regular Papers 60, 150 (2012).
  6. T. Nishikawa and A. E. Motter, New Journal of Physics 17, 015012 (2015).
  7. A. R. Bergen and D. J. Hill, IEEE transactions on power apparatus and systems , 25 (1981).
  8. S. H. Strogatz, Physica D: Nonlinear Phenomena 143, 1 (2000).
  9. T. Chen and R. Davis, Nonlinear Dynamics 109, 2203–2222 (2022).
  10. M. E. J. Newman, Networks – An Introduction (Oxford University Press, Oxford, 2010).
  11. M. Randić and D. Klein, J. Math. Chem 12, 81 (1993).
  12. W. Sun and Y.-X. Yuan, Optimization theory and methods: nonlinear programming (Springer Science & Business Media, New York, 2006).
  13. L. R. Ford Jr and D. R. Fulkerson, Flows in networks (Princeton University Press, Princeton, 2015).
  14. Y. Nussbaum, arXiv preprint arXiv:1012.4767  (2010).
  15. Matpower, “30-bus test case,” https://matpower.org/docs/ref/matpower5.0/case30.html, accessed: 2023-05-04.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com