Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-order numerical integration on regular embedded surfaces (2403.09178v1)

Published 14 Mar 2024 in math.NA and cs.NA

Abstract: We present a high-order surface quadrature (HOSQ) for accurately approximating regular surface integrals on closed surfaces. The initial step of our approach rests on exploiting square-squeezing--a homeomorphic bilinear square-simplex transformation, re-parametrizing any surface triangulation to a quadrilateral mesh. For each resulting quadrilateral domain we interpolate the geometry by tensor polynomials in Chebyshev--Lobatto grids. Posterior the tensor-product Clenshaw-Curtis quadrature is applied to compute the resulting integral. We demonstrate efficiency, fast runtime performance, high-order accuracy, and robustness for complex geometries.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. A. Bonito and R. H. Nochetto. Geometric Partial Differential Equations — Part I. Elsevier, 2020.
  2. H. Brezis. Functional analysis, sobolev spaces and partial differential equations. 2010.
  3. Q. Chen and I. Babuška. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Computer Methods in Applied Mechanics and Engineering, 128(3):405–417, 1995.
  4. M. G. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM Journal on Numerical Analysis, 19:1260–1262, 1982.
  5. G. Dziuk and C. M. Elliott. Finite element methods for surface PDEs. Acta Numerica, 22:289–396, 2013.
  6. Estimates of the error in gauss–legendre quadrature for double integrals. Journal of Computational and Applied Mathematics, 236(6):1552–1561, 2011.
  7. D. Fortunato. A high-order fast direct solver for surface PDEs. arXiv preprint arXiv:2210.00022, 2022.
  8. Adsorption surface area and porosity. Journal of The Electrochemical Society, 114(11):279, nov 1967.
  9. Multivariate interpolation in unisolvent nodes–lifting the curse of dimensionality. arXiv preprint arXiv:2010.10824, 2020.
  10. W. Heinrichs and B. I. Loch. Spectral schemes on triangular elements. Journal of Computational Physics, 173(1):279–301, 2001.
  11. minterpy – Multivariate interpolation in Python. https://github.com/casus/minterpy, 2021.
  12. Spectral/h⁢pℎ𝑝hpitalic_h italic_p element methods for computational fluid dynamics. Oxford University Press, 2005.
  13. J.-O. Lachaud. Convergent geometric estimators with digital volume and surface integrals. In Discrete Geometry for Computer Imagery, pages 3–17. Springer, 2016.
  14. P.-O. Persson and G. Strang. A simple mesh generator in MATLAB. SIAM Review, 46(2):329–345, 2004.
  15. S. Praetorius and F. Stenger. Dune-CurvedGrid – a Dune module for surface parametrization. Archive of Numerical Software, page Vol. 1 No. 1 (2022), 2022.
  16. J. C. Riviere and S. Myhra. Handbook of surface and interface analysis: methods for problem-solving. CRC press, 2009.
  17. M. Spivak. A Comprehensive Introduction to Differential Geometry, volume 1. Publish or Perish Incorporated, 1999.
  18. M. A. Taylor and B. Wingate. A generalized diagonal mass matrix spectral element method for non-quadrilateral elements. Applied Numerical Mathematics, 33(1-4):259–265, 2000.
  19. L. N. Trefethen. Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics, 2000.
  20. L. N. Trefethen. Approximation theory and approximation practice, volume 164. SIAM, 2019.
  21. S. Xiang and F. A. Bornemann. On the convergence rates of gauss and clenshaw-curtis quadrature for functions of limited regularity. SIAM J. Numer. Anal., 50:2581–2587, 2012.
  22. High-order integration on regular triangulated manifolds reaches super-algebraic approximation rates through cubical re-parameterizations. arXiv preprint arXiv:2311.13909, 2023.
  23. A note on the rate of convergence of integration schemes for closed surfaces. Computational and Applied Mathematics, 43(2):1–17, 2024.
  24. Q. Zhou and P. Somasundaran. Surface and Interfacial Tension: Measurement, Theory, and Applications. Surfactant Science Series, volume 119. ACS Publications, 2005.
Citations (1)

Summary

We haven't generated a summary for this paper yet.