Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bridging Quantum Computing and Differential Privacy: Insights into Quantum Computing Privacy (2403.09173v3)

Published 14 Mar 2024 in quant-ph and cs.CR

Abstract: While quantum computing has strong potential in data-driven fields, the privacy issue of sensitive or valuable information involved in the quantum algorithm should be considered. Differential privacy (DP), which is a fundamental privacy tool widely used in the classical scenario, has been extended to the quantum domain, i.e., quantum differential privacy (QDP). QDP may become one of the most promising approaches toward privacy-preserving quantum computing since it is not only compatible with classical DP mechanisms but also achieves privacy protection by exploiting unavoidable quantum noise in noisy intermediate-scale quantum (NISQ) devices. This paper provides an overview of the various implementations of QDP and their performance in terms of privacy parameters under the DP setting. Specifically, we propose a taxonomy of QDP techniques, categorizing the literature on whether internal or external randomization is used as a source to achieve QDP and how these implementations are applied to each phase of the quantum algorithm. We also discuss challenges and future directions for QDP. By summarizing recent advancements, we hope to provide a comprehensive, up-to-date review for researchers venturing into this field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the 28th Annual ACM SIGACT Symposium on Theory of Computing (STOC’96), July 1996, pp. 212–219.
  2. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS’94), November 1994, pp. 124–134.
  3. A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems of equations,” Physical Review Letters, vol. 103, no. 15, p. 150502, October 2009.
  4. H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu et al., “Quantum computational advantage using photons,” Science, vol. 370, no. 6523, pp. 1460–1463, December 2020.
  5. F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, October 2019.
  6. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al., “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, no. 9, pp. 625–644, August 2021.
  7. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature Communications, vol. 5, no. 1, p. 4213, July 2014.
  8. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028, November 2014.
  9. P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Physical Review Letters, vol. 113, no. 13, p. 130503, September 2014.
  10. S. Lloyd and C. Weedbrook, “Quantum generative adversarial learning,” Physical Review Letters, vol. 121, no. 4, p. 040502, April 2018.
  11. I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural networks,” Nature Physics, vol. 15, no. 12, pp. 1273–1278, August 2019.
  12. J. Bausch, “Recurrent quantum neural networks,” Advances in Neural Information Processing Systems (NeurIPS’20), pp. 1368–1379, December 2020.
  13. Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum computing for drug discovery,” IBM Journal of Research and Development, vol. 62, no. 6, pp. 6–1, November 2018.
  14. N. P. De Leon, K. M. Itoh, D. Kim, K. K. Mehta, T. E. Northup, H. Paik, B. Palmer, N. Samarth, S. Sangtawesin, and D. W. Steuerman, “Materials challenges and opportunities for quantum computing hardware,” Science, vol. 372, no. 6539, p. 2823, April 2021.
  15. R. Orús, S. Mugel, and E. Lizaso, “Quantum computing for finance: Overview and prospects,” Reviews in Physics, vol. 4, p. 100028, November 2019.
  16. D. Herman, C. Googin, X. Liu, Y. Sun, A. Galda, I. Safro, M. Pistoia, and Y. Alexeev, “Quantum computing for finance,” Nature Reviews Physics, vol. 5, no. 8, pp. 450–465, July 2023.
  17. C. Berger, A. Di Paolo, T. Forrest, S. Hadfield, N. Sawaya, M. Stęchły, and K. Thibault, “Quantum technologies for climate change: Preliminary assessment,” arXiv preprint arXiv:2107.05362, July 2021.
  18. C. Xu, F. Erata, and J. Szefer, “Classification of quantum computer fault injection attacks,” arXiv preprint arXiv:2309.05478, September 2023.
  19. C. Chu, L. Jiang, M. Swany, and F. Chen, “Qtrojan: A circuit backdoor against quantum neural networks,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’23), June 2023, pp. 1–5.
  20. C. Chu, F. Chen, P. Richerme, and L. Jiang, “Qdoor: Exploiting approximate synthesis for backdoor attacks in quantum neural networks,” in 2023 IEEE International Conference on Quantum Computing and Engineering (QCE’23), September 2023, pp. 1098–1106.
  21. Amazon Web Services. (2020) Amazon braket. [Online]. Available: https://aws.amazon.com/braket
  22. Microsoft Azure. (2023) Azure quantum cloud service. [Online]. Available: https://azure.microsoft.com/en-us/products/quantum
  23. C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy,” Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3–4, pp. 211–407, August 2014.
  24. C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Proceedings of 3rd Theory of Cryptography Conference (TCC’06), March 2006, pp. 265–284.
  25. M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS’16), October 2016, pp. 308–318.
  26. L. Zhou and M. Ying, “Differential privacy in quantum computation,” in 2017 IEEE 30th Computer Security Foundations Symposium (CSF’17), August 2017, pp. 249–262.
  27. Y. Du, M.-H. Hsieh, T. Liu, D. Tao, and N. Liu, “Quantum noise protects quantum classifiers against adversaries,” Physical Review Research, vol. 3, no. 2, p. 023153, May 2021.
  28. M. Schuld, “Supervised quantum machine learning models are kernel methods,” arXiv preprint arXiv:2101.11020, January 2021.
  29. C. Dwork, “Differential privacy,” in International Colloquium on Automata, Languages, and Programming (ICALP’06), July 2006, pp. 1–12.
  30. C. Dwork, G. N. Rothblum, and S. Vadhan, “Boosting and differential privacy,” in 2010 IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS’10), October 2010, pp. 51–60.
  31. Ú. Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized aggregatable privacy-preserving ordinal response,” in Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security (CCS’14), November 2014, pp. 1054–1067.
  32. W. Gong, D. Yuan, W. Li, and D.-L. Deng, “Enhancing quantum adversarial robustness by randomized encodings,” arXiv preprint arXiv:2212.02531, December 2022.
  33. C. Hirche, C. Rouzé, and D. S. França, “Quantum differential privacy: An information theory perspective,” IEEE Transactions on Information Theory (TIT), vol. 69, no. 9, pp. 5771–5787, September 2023.
  34. S. Aaronson and G. N. Rothblum, “Gentle measurement of quantum states and differential privacy,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC’19), June 2019, pp. 322–333.
  35. M. Angrisani, Armando, E. Doosti, and Kashefi, “A unifying framework for differentially private quantum algorithms,” arXiv preprint arXiv:2307.04733, July 2023.
  36. G. Verdon, M. Broughton, J. R. McClean, K. J. Sung, R. Babbush, Z. Jiang, H. Neven, and M. Mohseni, “Learning to learn with quantum neural networks via classical neural networks,” arXiv preprint arXiv:1907.05415, July 2019.
  37. G. De Palma, M. Marvian, D. Trevisan, and S. Lloyd, “The quantum wasserstein distance of order 1,” IEEE Transactions on Information Theory (TIT), vol. 67, no. 10, pp. 6627–6643, May 2021.
  38. T. Nuradha, Z. Goldfeld, and M. M. Wilde, “Quantum pufferfish privacy: a flexible privacy framework for quantum systems,” arXiv preprint arXiv:2306.13054, June 2023.
  39. M. Senekane, M. Mafu, and B. M. Taele, “Privacy-preserving quantum machine learning using differential privacy,” in Proceedings of IEEE AFRICON, September 2017, pp. 1432–1435.
  40. Y. Yoshida and M. Hayashi, “Classical mechanism is optimal in classical-quantum differentially private mechanisms,” in IEEE International Symposium on Information Theory (ISIT’20), June 2020, pp. 1973–1977.
  41. Y. Du, M.-H. Hsieh, T. Liu, S. You, and D. Tao, “Quantum differentially private sparse regression learning,” IEEE Transactions on Information Theory (TIT), vol. 68, no. 8, pp. 5217–5233, April 2022.
  42. A. Angrisani, M. Doosti, and E. Kashefi, “Differential privacy amplification in quantum and quantum-inspired algorithms,” in Proceedings of International Conference on Learning Representations Workshop (ICLR Workshop’22), April 2022.
  43. J. Guan, W. Fang, M. Huang, and M. Ying, “Detecting violations of differential privacy for quantum algorithms,” in ACM SIGSAC Conference on Computer and Communications Security (CCS’23), November 2023.
  44. W. Li, S. Lu, and D.-L. Deng, “Quantum federated learning through blind quantum computing,” Science China Physics, Mechanics & Astronomy, vol. 64, no. 10, p. 100312, September 2021.
  45. W. M. Watkins, S. Y.-C. Chen, and S. Yoo, “Quantum machine learning with differential privacy,” Scientific Reports, vol. 13, no. 1, p. 2453, February 2023.
  46. R. Rofougaran, S. Yoo, H.-H. Tseng, and S. Y.-C. Chen, “Federated quantum machine learning with differential privacy,” arXiv preprint arXiv:2310.06973, June 2023.
  47. Y. Li, Y. Zhao, X. Zhang, H. Zhong, M. Pan, and C. Zhang, “Differential privacy preserving quantum computing via projection operator measurements,” arXiv preprint arXiv:2312.08210, December 2023.
  48. A. Angrisani and E. Kashefi, “Quantum statistical query model and local differential privacy,” in Proceedings of International Conference on Machine Learning Workshop (ICML Workshop’21), July 2021.
  49. C. Dankert, R. Cleve, J. Emerson, and E. Livine, “Exact and approximate unitary 2-designs and their application to fidelity estimation,” Physical Review A, vol. 80, no. 1, p. 012304, July 2009.
  50. J. Vovrosh, K. E. Khosla, S. Greenaway, C. Self, M. S. Kim, and J. Knolle, “Simple mitigation of global depolarizing errors in quantum simulations,” Physical Review E, vol. 104, no. 3, p. 035309, September 2021.
  51. J.-C. Huang, Y.-L. Tsai, C.-H. H. Yang, C.-F. Su, C.-M. Yu, P.-Y. Chen, and S.-Y. Kuo, “Certified robustness of quantum classifiers against adversarial examples through quantum noise,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’23), June 2023, pp. 1–5.
  52. G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen et al., “Qiskit: An open-source framework for quantum computing,” Accessed on: March, vol. 16, March 2019.
  53. V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi et al., “Pennylane: Automatic differentiation of hybrid quantum-classical computations,” arXiv preprint arXiv:1811.04968, November 2018.
  54. M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S. V. Isakov, P. Massey, R. Halavati, M. Y. Niu, A. Zlokapa et al., “Tensorflow quantum: A software framework for quantum machine learning,” arXiv preprint arXiv:2003.02989, March 2020.
  55. H. Wang, Y. Ding, J. Gu, Y. Lin, D. Z. Pan, F. T. Chong, and S. Han, “Quantumnas: Noise-adaptive search for robust quantum circuits,” in 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA’22), April 2022, pp. 692–708.
  56. J.-S. Kim, A. McCaskey, B. Heim, M. Modani, S. Stanwyck, and T. Costa, “Cuda quantum: The platform for integrated quantum-classical computing,” in 2023 60th ACM/IEEE Design Automation Conference (DAC’23), July 2023, pp. 1–4.
  57. Google TensorFlow. (2021) Tensorflow privacy. [Online]. Available: https://www.tensorflow.org/responsible_ai/privacy
  58. M. Jagielski, J. Ullman, and A. Oprea, “Auditing differentially private machine learning: How private is private sgd?” in Advances in Neural Information Processing Systems (NeurIPS’20), vol. 33, December 2020, pp. 22 205–22 216.
  59. M. Nasr, J. Hayes, T. Steinke, B. Balle, F. Tramèr, M. Jagielski, N. Carlini, and A. Terzis, “Tight auditing of differentially private machine learning,” in USENIX Security Symposium (USENIX Security’23), August 2023.
  60. T. Steinke, M. Nasr, and M. Jagielski, “Privacy auditing with one (1) training run,” in Advances in Neural Information Processing Systems (NeurIPS’23), December 2023.
  61. B. Bichsel, T. Gehr, D. Drachsler-Cohen, P. Tsankov, and M. Vechev, “Dp-finder: Finding differential privacy violations by sampling and optimization,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS’18), October 2018, pp. 508–524.
  62. Z. Ding, Y. Wang, G. Wang, D. Zhang, and D. Kifer, “Detecting violations of differential privacy,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS’18), October 2018, pp. 475–489.
  63. F. Tramer, A. Terzis, T. Steinke, S. Song, M. Jagielski, and N. Carlini, “Debugging differential privacy: A case study for privacy auditing,” arXiv preprint arXiv:2202.12219, February 2022.
  64. P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem for differential privacy,” in Proceedings of International Conference on Machine Learning (ICML’15), June 2015, pp. 1376–1385.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com