Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Casimir repulsion with biased semiconductors (2403.09007v1)

Published 14 Mar 2024 in quant-ph

Abstract: Quantum and thermal fluctuations are fundamental to a plethora of phenomena within quantum optics, including the Casimir effect that acts between closely separated surfaces typically found in MEMS and NEMS devices. Particularly promising for engineering and harnessing these forces are systems out of thermal equilibrium. Recently, semiconductors with external bias have been proposed to study the nonequilibrium Casimir force. Here, we explore systems involving moderately biased semiconductors that exhibit strong repulsive Casimir forces, and we determine the effects of bias voltage, semiconductor bandgap energy, and separation for experimentally accessible configurations. Modes emitted from the semiconductors exert a repulsive force on a near surface that overcomes the attractive equilibrium Casimir force contribution at submicron distances. For the geometry of two parallel planes, those modes undergo Fabry-P\'erot interference resulting in an oscillatory force behavior as a function of separation. Utilizing the proximity-force approximation, we predict that the repulsive force exerted on a gold sphere is well within the accuracy of typical Casimir force experiments. Our work opens up new possibilities of controlling forces at the nano- and micrometer scale with applications in sensing and actuation in nanotechnology.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” \JournalTitleRev. Mod. Phys. 86, 1391–1452 (2014).
  2. S. Barzanjeh, A. Xuereb, S. Gröblacher, et al., “Optomechanics for quantum technologies,” \JournalTitleNat. Phys. 18, 15–24 (2022).
  3. H. B. G. Casimir, “On the attraction between two perfectly conducting plates,” \JournalTitleProc. K. Ned. Akad. Wet. 51, 793 (1948).
  4. H. B. Chan, V. A. Aksyuk, R. N. Kleiman, et al., “Quantum Mechanical Actuation of Microelectromechanical Systems by the Casimir Force,” \JournalTitleScience 291, 1941–1944 (2001).
  5. G. Palasantzas, M. Sedighi, and V. B. Svetovoy, “Applications of Casimir forces: Nanoscale actuation and adhesion,” \JournalTitleApplied Physics Letters 117, 120501 (2020).
  6. J. N. Munday, F. Capasso, and V. A. Parsegian, “Measured long-range repulsive Casimir–Lifshitz forces,” \JournalTitleNature 457, 170–173 (2009).
  7. T. Gong, M. R. Corrado, A. R. Mahbub, et al., “Recent progress in engineering the Casimir effect – applications to nanophotonics, nanomechanics, and chemistry,” \JournalTitleNanophotonics 10, 523–536 (2020).
  8. T. H. Boyer, “Van der Waals forces and zero-point energy for dielectric and permeable materials,” \JournalTitlePhys. Rev. A 9, 2078–2084 (1974).
  9. C. Henkel and K. Joulain, “Casimir force between designed materials: What is possible and what not,” \JournalTitleEurophys. Lett. 72, 929–935 (2005).
  10. B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, “Thermal Casimir interaction between two magnetodielectric plates,” \JournalTitlePhys. Rev. B 81, 104101 (2010).
  11. N. Inui, “Quantum levitation of a thin magnetodielectric plate on a metallic plate using the repulsive Casimir force,” \JournalTitleJournal of Applied Physics 111, 074304 (2012).
  12. C. Shelden, B. Spreng, and J. N. Munday, “Enhanced repulsive Casimir forces between gold and thin magnetodielectric plates,” \JournalTitlePhys. Rev. A 108, 032817 (2023).
  13. A. G. Grushin and A. Cortijo, “Tunable Casimir Repulsion with Three-Dimensional Topological Insulators,” \JournalTitlePhys. Rev. Lett. 106, 020403 (2011).
  14. J. C. Martinez and M. B. A. Jalil, “Tuning the Casimir force via modification of interface properties of three-dimensional topological insulators,” \JournalTitleJournal of Applied Physics 113, 204302 (2013).
  15. W. Nie, R. Zeng, Y. Lan, and S. Zhu, “Casimir force between topological insulator slabs,” \JournalTitlePhys. Rev. B 88, 085421 (2013).
  16. P. Rodriguez-Lopez and A. G. Grushin, “Repulsive Casimir Effect with Chern Insulators,” \JournalTitlePhys. Rev. Lett. 112, 056804 (2014).
  17. J. H. Wilson, A. A. Allocca, and V. Galitski, “Repulsive Casimir force between Weyl semimetals,” \JournalTitlePhys. Rev. B 91, 235115 (2015).
  18. M. Levin, A. P. McCauley, A. W. Rodriguez, et al., “Casimir Repulsion between Metallic Objects in Vacuum,” \JournalTitlePhys. Rev. Lett. 105, 090403 (2010).
  19. M. Antezza, L. P. Pitaevskii, S. Stringari, and V. B. Svetovoy, “Casimir-Lifshitz Force Out of Thermal Equilibrium and Asymptotic Nonadditivity,” \JournalTitlePhys. Rev. Lett. 97, 223203 (2006).
  20. M. Antezza, L. P. Pitaevskii, S. Stringari, and V. B. Svetovoy, “Casimir-Lifshitz force out of thermal equilibrium,” \JournalTitlePhys. Rev. A 77, 022901 (2008).
  21. M. Krüger, T. Emig, G. Bimonte, and M. Kardar, “Non-equilibrium Casimir forces: Spheres and sphere-plate,” \JournalTitleEPL 95, 21002 (2011).
  22. R. Messina and M. Antezza, “Casimir-Lifshitz force out of thermal equilibrium and heat transfer between arbitrary bodies,” \JournalTitleEPL 95, 61002 (2011).
  23. R. Messina and M. Antezza, “Scattering-matrix approach to Casimir-Lifshitz force and heat transfer out of thermal equilibrium between arbitrary bodies,” \JournalTitlePhys. Rev. A 84, 042102 (2011).
  24. G. Bimonte, T. Emig, M. Krüger, and M. Kardar, “Dilution and resonance-enhanced repulsion in nonequilibrium fluctuation forces,” \JournalTitlePhys. Rev. A 84, 042503 (2011).
  25. M. Krüger, G. Bimonte, T. Emig, and M. Kardar, “Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects,” \JournalTitlePhys. Rev. B 86, 115423 (2012).
  26. A. Noto, R. Messina, B. Guizal, and M. Antezza, “Casimir-Lifshitz force out of thermal equilibrium between dielectric gratings,” \JournalTitlePhys. Rev. A 90, 022120 (2014).
  27. C. Henkel, K. Joulain, J.-P. Mulet, and J.-J. Greffet, “Radiation forces on small particles in thermal near fields,” \JournalTitleJ. Opt. A: Pure Appl. Opt. 4, S109–S114 (2002).
  28. A. E. Cohen and S. Mukamel, “Resonant Enhancement and Dissipation in Nonequilibrium van der Waals Forces,” \JournalTitlePhys. Rev. Lett. 91, 233202 (2003).
  29. J. M. Obrecht, R. J. Wild, M. Antezza, et al., “Measurement of the Temperature Dependence of the Casimir-Polder Force,” \JournalTitlePhys. Rev. Lett. 98, 063201 (2007).
  30. G. Bimonte, T. Emig, M. Kardar, and M. Krüger, “Nonequilibrium Fluctuational Quantum Electrodynamics: Heat Radiation, Heat Transfer, and Force,” \JournalTitleAnnu. Rev. Condens. Matter Phys. 8, 119–143 (2017).
  31. G. Bimonte, “Observing the Casimir-Lifshitz force out of thermal equilibrium,” \JournalTitlePhys. Rev. A 92, 032116 (2015).
  32. K. Chen and S. Fan, “Nonequilibrium Casimir Force with a Nonzero Chemical Potential for Photons,” \JournalTitlePhys. Rev. Lett. 117, 267401 (2016).
  33. P. T. Landsberg, “Photons at non-zero chemical potential,” \JournalTitleJ. Phys. C: Solid State Phys. 14, L1025–L1027 (1981).
  34. P Wurfel, “The chemical potential of radiation,” \JournalTitleJ. Phys. C: Solid State Phys. 15, 3967–3985 (1982).
  35. B. Feuerbacher and P. Wurfel, “Verification of a generalised Planck law by investigation of the emission from GaAs luminescent diodes,” \JournalTitleJ. Phys.: Condens. Matter 2, 3803–3810 (1990).
  36. R. I. P. Sedmik and M. Pitschmann, “Next Generation Design and Prospects for Cannex,” \JournalTitleUniverse 7, 234 (2021).
  37. P. Berdahl, “Radiant refrigeration by semiconductor diodes,” \JournalTitleJournal of Applied Physics 58, 1369–1374 (1985).
  38. L. Zhu, A. Fiorino, D. Thompson, et al., “Near-field photonic cooling through control of the chemical potential of photons,” \JournalTitleNature 566, 239–244 (2019).
  39. E. M. Lifshitz, “The theory of molecular attractive forces between solids,” \JournalTitleSov. Phys. JETP (Engl. Transl.) 2, 73 (1956).
  40. I. Dzyaloshinskii, E. Lifshitz, and L. Pitaevskii, “The general theory of van der waals forces,” \JournalTitleAdv. Phys. 10, 165–209 (1961).
  41. “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/25.12, Release 1.1.11 of 2023-09-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
  42. G. L. Klimchitskaya and V. M. Mostepanenko, “Recent measurements of the Casimir force: Comparison between experiment and theory,” \JournalTitleMod. Phys. Lett. A 35, 2040007 (2020).
  43. G. Bimonte, B. Spreng, P. A. Maia Neto, et al., “Measurement of the Casimir Force between 0.2 and 8 μ𝜇\muitalic_μm: Experimental Procedures and Comparison with Theory,” \JournalTitleUniverse 7, 93 (2021).
  44. B. Spreng, P. A. Maia Neto, and G.-L. Ingold, “Plane-wave approach to the exact van der Waals interaction between colloid particles,” \JournalTitleJ. Chem. Phys. 153, 024115 (2020).
  45. V. B. Derjaguin, “Theorie des Anhaftens kleiner Teilchen,” \JournalTitleProgress in Surface Science 40, 6–15 (1992).
  46. T. Schoger, B. Spreng, G.-L. Ingold, and P. A. Maia Neto, “Casimir effect between spherical objects: Proximity-force approximation and beyond using plane waves,” \JournalTitleInt. J. Mod. Phys. A 37, 2241009 (2022).
  47. B. Spreng, C. Shelden, T. Gong, and J. N. Munday, “Data for: Casimir repulsion with biased semiconductors,” Zenodo (2024). https://doi.org/10.5281/zenodo.10791253.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com