Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Security Assumptions in Dispersive-Optics QKD (2403.08992v1)

Published 13 Mar 2024 in quant-ph

Abstract: Quantum key distribution (QKD) seeks to provide a method of generating cryptographically-secure keys between remote parties while guaranteeing unconditional security. Implementations of high-dimensional QKD using dispersive-optics (DO-QKD) have been proposed to allow for multiple secure bits to be transmitted per photon while remaining cost-effective and scalable using existing telecommunication technology [1]. In the recent literature, there have been a number of experimental realizations of DO-QKD systems [2-6], with security analysis based on the treatment in Ref. [1]. Here we demonstrate that in the case of finite dispersion, the model assumed for the eavesdropper's attack in Ref. [1] is non-optimal for the eavesdropper, which leads to a significant overestimation of the secure key rate between parties. We consider an alternative attack model that Alice and Bob find indistinguishable from the Ref. [1] model, as long as they are restricted to making the measurements typical in DO-QKD. We provide concrete examples where a significant gap exists between the Holevo information, and therefore the secret key rate, predicted by the two models. We further analyze the experiment in Ref. [2] as an example of a case where secure key is predicted according to the Ref. [1] model, but where in fact there is zero secure key rate when considering the full set of collective attacks that an eavesdropper may perform.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theoretical Computer Science 560, 7 (2014), theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84.
  2. A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
  3. F. Grosshans and P. Grangier, Continuous variable quantum cryptography using coherent states, Phys. Rev. Lett. 88, 057902 (2002).
  4. N. J. Cerf, M. Lévy, and G. V. Assche, Quantum distribution of gaussian keys using squeezed states, Phys. Rev. A 63, 052311 (2001).
  5. L. Zhang, C. Silberhorn, and I. A. Walmsley, Secure quantum key distribution using continuous variables of single photons, Phys. Rev. Lett. 100, 110504 (2008).
  6. B. Qi, Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation, Opt. Lett. 31, 2795 (2006).
  7. N. Fabre, A. Keller, and P. Milman, Time and frequency as quantum continuous variables, Phys. Rev. A 105, 052429 (2022).
  8. R. Garcia-Patron Sanchez, Quantum information with optical continuous variables: from Bell tests to key distribution, Ph.D. thesis, Université Libre de Bruxelles (2007).
  9. C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without bell’s theorem, Phys. Rev. Lett. 68, 557 (1992).
  10. W. H. Louisell, A. Yariv, and A. E. Siegman, Quantum fluctuations and noise in parametric processes. i., Phys. Rev. 124, 1646 (1961).
  11. D. C. Burnham and D. L. Weinberg, Observation of simultaneity in parametric production of optical photon pairs, Phys. Rev. Lett. 25, 84 (1970).
  12. V. C. Usenko and R. Filip, Trusted noise in continuous-variable quantum key distribution: A threat and a defense, Entropy 18, 10.3390/e18010020 (2016).
  13. M. M. Wolf, G. Giedke, and J. I. Cirac, Extremality of gaussian quantum states, Phys. Rev. Lett. 96, 080502 (2006).
  14. R. García-Patrón and N. J. Cerf, Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution, Phys. Rev. Lett. 97, 190503 (2006).
  15. M. Navascués, F. Grosshans, and A. Acín, Optimality of gaussian attacks in continuous-variable quantum cryptography, Phys. Rev. Lett. 97, 190502 (2006).
  16. A. Leverrier and P. Grangier, Simple proof that gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a gaussian modulation, Phys. Rev. A 81, 062314 (2010).
  17. R. Renner and J. I. Cirac, de finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography, Phys. Rev. Lett. 102, 110504 (2009).
  18. S. Pirandola, S. L. Braunstein, and S. Lloyd, Characterization of collective gaussian attacks and security of coherent-state quantum cryptography, Phys. Rev. Lett. 101, 200504 (2008).
  19. R. Renner, N. Gisin, and B. Kraus, Information-theoretic security proof for quantum-key-distribution protocols, Phys. Rev. A 72, 012332 (2005).
  20. I. Devetak and A. Winter, Distillation of secret key and entanglement from quantum states, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 461, 207–235 (2005).
  21. N. J. Cerf and C. Adami, Accessible information in quantum measurement (1996), arXiv:quant-ph/9611032 [quant-ph] .
  22. I. Ali-Khan, C. J. Broadbent, and J. C. Howell, Large-alphabet quantum key distribution using energy-time entangled bipartite states, Phys. Rev. Lett. 98, 060503 (2007).
  23. J. D. Franson, Nonlocal cancellation of dispersion, Phys. Rev. A 45, 3126 (1992).
  24. I. Gel’fand and A. Yaglom, Calculation of the Amount of Information about a Random Function Contained in Another Such Function, American Mathematical Society translations (American Mathematical Society, 1959).
  25. C. Lee et al., High-dimensional quantum communication over deployed fiber, Ph.D. thesis, Massachusetts Institute of Technology (2018).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com