Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Electrochemical Communication in Bacterial Biofilms: A Study on Potassium Stimulation and Signal Transmission (2403.08926v1)

Published 13 Mar 2024 in cs.IT, math.IT, and physics.bio-ph

Abstract: Electrochemical communication is a mechanism that enables intercellular interaction among bacteria within communities. Bacteria achieves synchronization and coordinates collective actions at the population level through the utilization of electrochemical signals. In this work, we investigate the response of bacterial biofilms to artificial potassium concentration stimulation. We introduce signal inputs at a specific location within the biofilm and observe their transmission to other regions, facilitated by intermediary cells that amplify and relay the signal. We analyze the output signals when biofilm regions are subjected to different input signal types and explore their impact on biofilm growth. Furthermore, we investigate how the temporal gap between input pulses influences output signal characteristics, demonstrating that an appropriate gap yields distinct and well-defined output signals. Our research sheds light on the potential of bacterial biofilms as communication nodes in electrochemical communication networks.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. D.-y. D. Lee, A. Prindle, J. Liu, and G. M. Süel, “Snapshot: Electrochemical communication in biofilms,” Cell, vol. 170, no. 1, pp. 214–214.e1, Jun. 2017.
  2. Y. Liu, J. Li, T. Tschirhart, J. L. Terrell, E. Kim, C.-Y. Tsao, D. L. Kelly, W. E. Bentley, and G. F. Payne, “Connecting biology to electronics: Molecular communication via redox modality,” Adv. Healthcare Mater., vol. 6, no. 24, p. 1700789, Dec. 2017.
  3. M. Kang, E. Kim, J. Li, W. E. Bentley, and G. F. Payne, “Redox: Electron-based approach to bio-device molecular communication,” in Proc. SPAWC.   Kalamata: IEEE, Jun. 2018, pp. 1–5.
  4. J. Liu, A. Prindle, J. Humphries, M. Gabalda-Sagarra, M. Asally, D.-y. D. Lee, S. Ly, J. Garcia-Ojalvo, and G. M. Süel, “Metabolic co-dependence gives rise to collective oscillations within biofilms,” Nature, vol. 523, no. 7562, pp. 550–554, Jul. 2015.
  5. A. Prindle, J. Liu, M. Asally, S. Ly, J. Garcia-Ojalvo, and G. M. Süel, “Ion channels enable electrical communication in bacterial communities,” Nature, vol. 527, no. 7576, pp. 59–63, Nov. 2015.
  6. R. Martinez-Corral, J. Liu, A. Prindle, G. M. Süel, and J. Garcia-Ojalvo, “Metabolic basis of brain-like electrical signalling in bacterial communities,” Phil. Trans. R. Soc. B, vol. 374, no. 1774, p. 20180382, Jun. 2019.
  7. R. Martinez-Corral, J. Liu, G. M. Süel, and J. Garcia-Ojalvo, “Bistable emergence of oscillations in growing Bacillus subtilis biofilms,” Proc. Natl. Acad. Sci. U.S.A., vol. 115, no. 36, Sep. 2018.
  8. N. Ford, G. Fisher, A. Prindle, and D. Chopp, “A two-dimensional model of potassium signaling and oscillatory growth in a biofilm,” Bull Math Biol, vol. 83, no. 5, p. 60, May 2021.
  9. J. Liu, R. Martinez-Corral, A. Prindle, D.-y. D. Lee, J. Larkin, M. Gabalda-Sagarra, J. Garcia-Ojalvo, and G. M. Süel, “Coupling between distant biofilms and emergence of nutrient time-sharing,” Science, vol. 356, no. 6338, pp. 638–642, May 2017.
  10. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” The Journal of Physiology, vol. 117, no. 4, pp. 500–544, Aug. 1952.
  11. J. M. Benarroch and M. Asally, “The microbiologist’s guide to membrane potential dynamics,” Trends in Microbiology, vol. 28, no. 4, pp. 304–314, Apr. 2020.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com