2000 character limit reached
Robust a posteriori error control for the Allen-Cahn equation with variable mobility (2403.08898v1)
Published 13 Mar 2024 in math.NA, cs.NA, and math.AP
Abstract: In this work, we derive a $\gamma$-robust a posteriori error estimator for finite element approximations of the Allen-Cahn equation with variable non-degenerate mobility. The estimator utilizes spectral estimates for the linearized steady part of the differential operator as well as a conditional stability estimate based on a weighted sum of Bregman distances, based on the energy and a functional related to the mobility. A suitable reconstruction of the numerical solution in the stability estimate leads to a fully computable estimator.
- G. Akrivis and B. Li. Error estimates for fully discrete BDF finite element approximations of the Allen–Cahn equation. IMA J. Numer., 42(1):363–391, 2020.
- A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall, 27(6):1085–1095, 1979.
- A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math., 105(2):193–216, 2006.
- J. W. Barrett. Finite element approximation of an Allen-Cahn/Cahn-Hilliard system. IMA J. Numer., 22(1):11–71, 2002.
- S. Bartels. Numerical Methods for Nonlinear Partial Differential Equations. Springer International Publishing, 2015.
- S. Bartels. Robustness of error estimates for phase field models at a class of topological changes. Comput. Methods Appl. Mech. Engrg., 288:75–82, 2015.
- S. Bartels and R. Müller. Error control for the approximation of Allen–Cahn and Cahn–Hilliard equations with a logarithmic potential. Numer. Math., 119(3):409–435, 2011.
- S. Bartels and R. Müller. Quasi-optimal and robust a posteriori error estimates in l∞(l2)superscript𝑙superscript𝑙2l^{\infty}(l^{2})italic_l start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_l start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) for the approximation of Allen-Cahn equations past singularities. Math. Comput., 80(274):761–761, 2011.
- Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes. SIAM J. Numer. Anal., 49(1):110–134, 2011.
- D. Blömker and M. Kamrani. Numerically computable a posteriori-bounds for the stochastic Allen-Cahn equation. BIT, 59(3):647–673, 2019.
- X. Chen. Spectrum for the Allen-Cahn, Cahn-Hillard, and phase-field equations for generic interfaces. Commun. Partial Differ. Equ., 19(7-8):1371–1395, 1994.
- Recovery type a posteriori error estimation of adaptive finite element method for Allen–Cahn equation. J. Comput. Appl., 369:112574, 2020.
- A posteriori error estimates for the Allen–Cahn problem. SIAM J. Numer. Anal., 58(5):2662–2683, 2020.
- A posteriori error estimates in the maximum norm for parabolic problems. SIAM J. Numer. Anal., 47(3):2157–2176, 2009.
- C. M. Elliott and H. Garcke. On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal., 27(2):404–423, 1996.
- X. Feng and A. Prohl. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math., 94(1):33–65, 2003.
- X. Feng and H.-J. Wu. A posteriori error estimates and an adaptive finite element method for the Allen–Cahn equation and the mean curvature flow. J. Sci. Comput., 24(2):121–146, 2005.
- E. H. Georgoulis and C. Makridakis. On a posteriori error control for the Allen-Cahn problem. Math. Methods Appl. Sci., 37(2):173–179, 2014.
- Convergence analysis for second-order accurate schemes for the periodic nonlocal Allen-Cahn and Cahn-Hilliard equations. Math. Methods Appl. Sci., 40(18):6836–6863, 2017.
- F. Hecht. New development in Freefem++. J. Numer. Math., 20(3-4):251–265, 2012.
- M. Heida. On systems of Cahn-Hilliard and Allen-Cahn equations considered as gradient flows in Hilbert spaces. J. Math. Anal. Appl., 423(1):410–455, 2015.
- Adaptive operator splitting finite element method for Allen–Cahn equation. Numer. Methods Partial Differ. Equ., 35(3):1290–1300, 2019.
- A posteriori error control for the Allen–Cahn problem: circumventing Gronwall’s inequality. ESIAM Math. Model Numer., 38(1):129–142, 2004.
- An unconditionally energy stable second order finite element method for solving the Allen–Cahn equation. J. Comput. Appl., 353:38–48, 2019.
- C. Makridakis and R. H. Nochetto. Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal., 41(4):1585–1594, 2003.
- P. D. Mottoni and M. Schatzman. Geometrical Evolution of Developed Interfaces. Trans. Am. Math. Soc., 347(5):1533–1589, 1995.
- On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci., 14(6):1517–1534, 2016.
- J. Shen and X. Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. Ser. A, 28(4):1669–1691, 2010.
- X. Xiao and X. Feng. A second-order maximum bound principle preserving operator splitting method for the Allen–Cahn equation with applications in multi-phase systems. Math. Comput. Simul., 202:36–58, 2022.
- X. Yang. Error analysis of stabilized semi-implicit method of Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B, 11(4):1057–1070, 2009.