Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TransformLoc: Transforming MAVs into Mobile Localization Infrastructures in Heterogeneous Swarms (2403.08815v1)

Published 14 Feb 2024 in cs.NI and cs.RO

Abstract: A heterogeneous micro aerial vehicles (MAV) swarm consists of resource-intensive but expensive advanced MAVs (AMAVs) and resource-limited but cost-effective basic MAVs (BMAVs), offering opportunities in diverse fields. Accurate and real-time localization is crucial for MAV swarms, but current practices lack a low-cost, high-precision, and real-time solution, especially for lightweight BMAVs. We find an opportunity to accomplish the task by transforming AMAVs into mobile localization infrastructures for BMAVs. However, turning this insight into a practical system is non-trivial due to challenges in location estimation with BMAVs' unknown and diverse localization errors and resource allocation of AMAVs given coupled influential factors. This study proposes TransformLoc, a new framework that transforms AMAVs into mobile localization infrastructures, specifically designed for low-cost and resource-constrained BMAVs. We first design an error-aware joint location estimation model to perform intermittent joint location estimation for BMAVs and then design a proximity-driven adaptive grouping-scheduling strategy to allocate resources of AMAVs dynamically. TransformLoc achieves a collaborative, adaptive, and cost-effective localization system suitable for large-scale heterogeneous MAV swarms. We implement TransformLoc on industrial drones and validate its performance. Results show that TransformLoc outperforms baselines including SOTA up to 68\% in localization performance, motivating up to 60\% navigation success rate improvement.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. M. T. Rashid, D. Y. Zhang, and D. Wang, “Socialdrone: An integrated social media and drone sensing system for reliable disaster response,” in Proceedings of the IEEE INFOCOM, 2020, pp. 218–227.
  2. K. McGuire, C. De Wagter, K. Tuyls, H. Kappen, and G. C. de Croon, “Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment,” Science Robotics, vol. 4, no. 35, p. eaaw9710, 2019.
  3. A. Khochare, Y. Simmhan, F. B. Sorbelli, and S. K. Das, “Heuristic algorithms for co-scheduling of edge analytics and routes for uav fleet missions,” in Processings of the IEEE INFOCOM, 2021, pp. 1–10.
  4. L. Bertizzolo, S. D’oro, L. Ferranti, L. Bonati, E. Demirors, Z. Guan, T. Melodia, and S. Pudlewski, “Swarmcontrol: An automated distributed control framework for self-optimizing drone networks,” in Proceedings of the IEEE INFOCOM, 2020, pp. 1768–1777.
  5. Y. Wang, Z. Su, Q. Xu, R. Li, and T. H. Luan, “Lifesaving with rescuechain: Energy-efficient and partition-tolerant blockchain based secure information sharing for uav-aided disaster rescue,” in Processings of the IEEE INFOCOM, 2021, pp. 1–10.
  6. J. Li, H. Kang, G. Sun, S. Liang, Y. Liu, and Y. Zhang, “Physical layer secure communications based on collaborative beamforming for uav networks: A multi-objective optimization approach,” in Processings of the IEEE INFOCOM, 2021, pp. 1–10.
  7. “Global drones market outlook (2022-2032),” https://www.factmr.com/report/62/drone-market.
  8. C. Ruiz, X. Chen, L. Zhang, and P. Zhang, “Collaborative localization and navigation in heterogeneous uav swarms: Demo abstract,” in Proceedings of the 14th ACM Sensys, 2016, pp. 324–325.
  9. X. Chen, A. Purohit, S. Pan, C. Ruiz, J. Han, Z. Sun, F. Mokaya, P. Tague, and P. Zhang, “Design experiences in minimalistic flying sensor node platform through sensorfly,” ACM TOSN, vol. 13, no. 4, pp. 1–37, 2017.
  10. M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M. W. Achtelik, and R. Siegwart, “The euroc micro aerial vehicle datasets,” The International Journal of Robotics Research, vol. 35, no. 10, pp. 1157–1163, 2016.
  11. P. Schmuck and M. Chli, “Ccm-slam: Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams,” Journal of Field Robotics, vol. 36, no. 4, 2019.
  12. T. Li, S. Leng, Z. Wang, K. Zhang, and L. Zhou, “Intelligent resource allocation schemes for uav-swarm-based cooperative sensing,” IEEE Internet of Things Journal, vol. 9, no. 21, pp. 21 570–21 582, 2022.
  13. A. Trotta, F. D. Andreagiovanni, M. Di Felice, E. Natalizio, and K. R. Chowdhury, “When uavs ride a bus: Towards energy-efficient city-scale video surveillance,” in Processings of the IEEE INFOCOM, 2018, pp. 1043–1051.
  14. G. Chi, Z. Yang, J. Xu, C. Wu, J. Zhang, J. Liang, and Y. Liu, “Wi-drone: Wi-fi-based 6-dof tracking for indoor drone flight control,” in Proceedings of the ACM MobiSys, 2022.
  15. J. Xu, H. Cao, D. Li, K. Huang, C. Qian, L. Shangguan, and Z. Yang, “Edge assisted mobile semantic visual slam,” in Proceedings of the IEEE INFOCOM, April 27-30 2020.
  16. J. Sharp, C. Wu, and Q. Zeng, “Authentication for drone delivery through a novel way of using face biometrics,” in Proceedings of the 28th ACM MobiCom, 2022, pp. 609–622.
  17. S. Xu, X. Chen, X. Pi, C. Joe-Wong, P. Zhang, and H. Y. Noh, “ilocus: Incentivizing vehicle mobility to optimize sensing distribution in crowd sensing,” IEEE Transactions on Mobile Computing, vol. 19, no. 8, pp. 1831–1847, 2019.
  18. D. Li, J. Xu, Z. Yang, Y. Lu, Q. Zhang, and X. Zhang, “Train once, locate anytime for anyone: Adversarial learning based wireless localization,” in Proceedings of the IEEE INFOCOM, May 10-13 2021.
  19. W. Wang, L. Mottola, Y. He, J. Li, Y. Sun, S. Li, H. Jing, and Y. Wang, “Micnest: Long-range instant acoustic localization of drones in precise landing,” in Proceedings of the 20th ACM SenSys, 2022.
  20. X. Chen, A. Purohit, C. R. Dominguez, S. Carpin, and P. Zhang, “Drunkwalk: Collaborative and adaptive planning for navigation of micro-aerial sensor swarms,” in Proceedings of the 13th ACM Sensys, 2015, pp. 295–308.
  21. Y. Sun, W. Wang, L. Mottola, R. Wang, and Y. He, “Aim: Acoustic inertial measurement for indoor drone localization and tracking,” in Proceedings of the 20th ACM Sensys, 2022, pp. 476–488.
  22. C. X. Lu, M. R. U. Saputra, P. Zhao, Y. Almalioglu, P. P. De Gusmao, C. Chen, K. Sun, N. Trigoni, and A. Markham, “milliego: single-chip mmwave radar aided egomotion estimation via deep sensor fusion,” in Proceedings of the 18th Sensys, 2020, pp. 109–122.
  23. E. Dong, J. Xu, C. Wu, Y. Liu, and Z. Yang, “Pair-navi: Peer-to-peer indoor navigation with mobile visual slam,” in Proceedings of the IEEE INFOCOM, April 29-May 2 2019.
  24. J. Wang and E. Olson, “Apriltag 2: Efficient and robust fiducial detection,” in Processings of the IEEE IROS, 2016, pp. 4193–4198.
  25. J. Xu, G. Chi, Z. Yang, D. Li, Q. Zhang, Q. Ma, and X. Miao, “Followupar: Enabling follow-up effects in mobile ar applications,” in Proceedings of the ACM MobiSys, June 24-July 2 2021.
  26. X. Zhang, A. Zhang, J. Sun, X. Zhu, Y. E. Guo, F. Qian, and Z. M. Mao, “Emp: Edge-assisted multi-vehicle perception,” in Proceedings of the 27th ACM Mobicom, 2021, pp. 545–558.
  27. J. Xu, F. Zhong, and Y. Wang, “Learning multi-agent coordination for enhancing target coverage in directional sensor networks,” Processings of the NeurIPS, vol. 33, pp. 10 053–10 064, 2020.
  28. H. Wang, X. Chen, Y. Cheng, C. Wu, F. Dang, and X. Chen, “H-swarmloc: Efficient scheduling for localization of heterogeneous mav swarm with deep reinforcement learning,” in Proceedings of the 20th ACM Sensys, 2022, pp. 1148–1154.
  29. J. Xu, H. Cao, Z. Yang, L. Shangguan, J. Zhang, X. He, and Y. Liu, “Swarmmap: Scaling up real-time collaborative visual slam at the edge,” in Proceedings of the USENIX NSDI, 2022, pp. 977–993.
  30. D. Li, J. Xu, Z. Yang, Q. Zhang, Q. Ma, L. Zhang, and P. Chen, “Motion inspires notion: self-supervised visual-lidar fusion for environment depth estimation,” in Proceedings of the 20th MobiSys, 2022, pp. 114–127.
  31. J. Luo, Y. Hu, C. Yu, C. Hong, X.-P. Zhang, and X. Chen, “Field reconstruction-based non-rendezvous calibration for low cost mobile sensors,” in Proceedings of the ACM Ubicomp, 2023, pp. 688–693.
  32. J. Guo, H. Wang, W. Liu, G. Huang, J. Gui, and S. Zhang, “A lightweight verifiable trust based data collection approach for sensor–cloud systems,” Journal of Systems Architecture, vol. 119, p. 102219, 2021.
  33. X. Chen, H. Wang, Z. Li, W. Ding, F. Dang, C. Wu, and X. Chen, “Deliversense: Efficient delivery drone scheduling for crowdsensing with deep reinforcement learning,” in Proceedings of the ACM Ubicomp, 2022, pp. 403–408.
  34. Y. Liu, X. Liu, F. Man, C. Wu, and X. Chen, “Fine-grained air pollution data enables smart living and efficient management,” in Proceedings of the 20th ACM Sensys, 2022, pp. 768–769.
  35. J. Ren, Y. Xu, Z. Li, C. Hong, X.-P. Zhang, and X. Chen, “Scheduling uav swarm with attention-based graph reinforcement learning for ground-to-air heterogeneous data communication,” in Proceedings of the ACM Ubicomp, 2023, pp. 670–675.
  36. X. Chen, S. Xu, X. Liu, X. Xu, H. Y. Noh, L. Zhang, and P. Zhang, “Adaptive hybrid model-enabled sensing system (hmss) for mobile fine-grained air pollution estimation,” IEEE Transactions on Mobile Computing, vol. 21, no. 6, pp. 1927–1944, 2020.
  37. L. Zhou, S. Leng, Q. Liu, and Q. Wang, “Intelligent uav swarm cooperation for multiple targets tracking,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 743–754, 2021.
  38. Z. Li, F. Man, X. Chen, B. Zhao, C. Wu, and X. Chen, “Tract: Towards large-scale crowdsensing with high-efficiency swarm path planning,” in Proceedings of the ACM Ubicomp, 2022, pp. 409–414.
  39. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile and accurate monocular slam system,” IEEE transactions on robotics, vol. 31, no. 5, pp. 1147–1163, 2015.
  40. X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu, Y. Cao, C. Xu et al., “Swarm of micro flying robots in the wild,” Science Robotics, vol. 7, no. 66, p. eabm5954, 2022.
  41. S. Kumar, S. Gil, D. Katabi, and D. Rus, “Accurate indoor localization with zero start-up cost,” in Proceedings of the ACM MobiCom, 2014, pp. 483–494.
  42. X. Chen, C. Ruiz, S. Zeng, L. Gao, A. Purohit, S. Carpin, and P. Zhang, “H-drunkwalk: Collaborative and adaptive navigation for heterogeneous mav swarm,” ACM Transactions on Sensor Networks, vol. 16, no. 2, pp. 1–27, 2020.
Citations (6)

Summary

We haven't generated a summary for this paper yet.