Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarially Robust Deepfake Detection via Adversarial Feature Similarity Learning (2403.08806v1)

Published 6 Feb 2024 in cs.CV, cs.LG, and cs.MM

Abstract: Deepfake technology has raised concerns about the authenticity of digital content, necessitating the development of effective detection methods. However, the widespread availability of deepfakes has given rise to a new challenge in the form of adversarial attacks. Adversaries can manipulate deepfake videos with small, imperceptible perturbations that can deceive the detection models into producing incorrect outputs. To tackle this critical issue, we introduce Adversarial Feature Similarity Learning (AFSL), which integrates three fundamental deep feature learning paradigms. By optimizing the similarity between samples and weight vectors, our approach aims to distinguish between real and fake instances. Additionally, we aim to maximize the similarity between both adversarially perturbed examples and unperturbed examples, regardless of their real or fake nature. Moreover, we introduce a regularization technique that maximizes the dissimilarity between real and fake samples, ensuring a clear separation between these two categories. With extensive experiments on popular deepfake datasets, including FaceForensics++, FaceShifter, and DeeperForensics, the proposed method outperforms other standard adversarial training-based defense methods significantly. This further demonstrates the effectiveness of our approach to protecting deepfake detectors from adversarial attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Sarwar Khan (7 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.