Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stabilizer Tensor Networks: universal quantum simulator on a basis of stabilizer states (2403.08724v2)

Published 13 Mar 2024 in quant-ph

Abstract: Efficient simulation of quantum computers relies on understanding and exploiting the properties of quantum states. This is the case for methods such as tensor networks, based on entanglement, and the tableau formalism, which represents stabilizer states. In this work, we integrate these two approaches to present a generalization of the tableau formalism used for Clifford circuit simulation. We explicitly prove how to update our formalism with Clifford gates, non-Clifford gates, and measurements, enabling universal circuit simulation. We also discuss how the framework allows for efficient simulation of more states, raising some interesting questions on the representation power of tensor networks and the quantum properties of resources such as entanglement and magic, and support our claims with simulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. G. Vidal, Class of Quantum Many-Body States That Can Be Efficiently Simulated, Physical Review Letters 101, 110501 (2008).
  2. I. Frérot, M. Fadel, and M. Lewenstein, Probing quantum correlations in many-body systems: A review of scalable methods, Reports on Progress in Physics 86, 114001 (2023).
  3. T. Begušić, J. Gray, and G. K.-L. Chan, Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance, Science Advances 10, eadk4321 (2024), 2308.05077 .
  4. E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
  5. G. Smith and D. Leung, Typical entanglement of stabilizer states, Physical Review A 74, 062314 (2006), quant-ph/0510232 .
  6. T. Haug and L. Piroli, Quantifying Nonstabilizerness of Matrix Product States (2022), 2207.13076 .
  7. T. J. Yoder, A generalization of the stabilizer formalism for simulating arbitrary quantum circuits (2012).
  8. R. Orus, A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States, Annals of Physics 349, 117 (2014), 1306.2164 .
  9. G. Vidal, Entanglement Renormalization, Physical Review Letters 99, 220405 (2007).
  10. G. Evenbly and G. Vidal, Tensor Network States and Geometry, Journal of Statistical Physics 145, 891 (2011).
  11. J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Reviews of Modern Physics 82, 277 (2010).
  12. I. P. McCulloch, Infinite size density matrix renormalization group, revisited (2008), 0804.2509 .
  13. M. A. Nielsen and I. L. Chuang, Introduction to quantum mechanics, in Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010) pp. 60–119.
  14. D. Gottesman, Stabilizer Codes and Quantum Error Correction (1997), quant-ph/9705052 .
  15. S. Peleg, A. Shpilka, and B. L. Volk, Lower Bounds on Stabilizer Rank, Quantum 6, 652 (2022), 2106.03214 .
  16. T. Haug and L. Piroli, Stabilizer entropies and nonstabilizerness monotones (2023), 2303.10152 .
  17. L. Leone, S. F. E. Oliviero, and A. Hamma, Stabilizer Rényi Entropy, Physical Review Letters 128, 050402 (2022).
  18. A. Mari and J. Eisert, Positive Wigner functions render classical simulation of quantum computation efficient, Physical Review Letters 109, 230503 (2012), 1208.3660 .
  19. S. Aaronson and D. Gottesman, Improved Simulation of Stabilizer Circuits, Physical Review A 70, 052328 (2004), quant-ph/0406196 .
  20. H. Qassim, H. Pashayan, and D. Gosset, Improved upper bounds on the stabilizer rank of magic states, Quantum 5, 606 (2021), 2106.07740 .
  21. S. Bravyi, G. Smith, and J. A. Smolin, Trading Classical and Quantum Computational Resources, Physical Review X 6, 021043 (2016).
  22. N. J. Ross and P. Selinger, Optimal ancilla-free Clifford+T approximation of z-rotations (2016), 1403.2975 .
  23. https://github.com/bsc-quantic/stabilizer-TN.
  24. C. Gidney, Stim: A fast stabilizer circuit simulator, Quantum 5, 497 (2021), 2103.02202 .
  25. Hadamard multiplication is an element wise multiplication of two tensors a𝑎aitalic_a and b𝑏bitalic_b of the same shape, such that the entries of the result c𝑐citalic_c follow: ci1⁢…⁢in=(a∘ℎb)i1⁢…⁢in=ai1⁢…⁢in⋅bi1⁢…⁢insubscript𝑐subscript𝑖1…subscript𝑖𝑛subscriptsubscriptℎ𝑎𝑏subscript𝑖1…subscript𝑖𝑛⋅subscript𝑎subscript𝑖1…subscript𝑖𝑛subscript𝑏subscript𝑖1…subscript𝑖𝑛c_{i_{1}\dots i_{n}}=(a\circ_{\textit{h}}b)_{i_{1}\dots i_{n}}=a_{i_{1}\dots i% _{n}}\cdot b_{i_{1}\dots i_{n}}italic_c start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ( italic_a ∘ start_POSTSUBSCRIPT h end_POSTSUBSCRIPT italic_b ) start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_a start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ⋅ italic_b start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_i start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT.
  26. P. Zanardi, C. Zalka, and L. Faoro, Entangling power of quantum evolutions, Physical Review A 62, 030301 (2000).
  27. J. Eisert, Entangling Power and Quantum Circuit Complexity, Physical Review Letters 127, 020501 (2021).
  28. S. Balakrishnan and R. Sankaranarayanan, Operator-Schmidt decomposition and the geometrical edges of two-qubit gates, Quantum Information Processing 10, 449 (2011).
Citations (14)

Summary

We haven't generated a summary for this paper yet.