Deep Learning for In-Orbit Cloud Segmentation and Classification in Hyperspectral Satellite Data (2403.08695v1)
Abstract: This article explores the latest Convolutional Neural Networks (CNNs) for cloud detection aboard hyperspectral satellites. The performance of the latest 1D CNN (1D-Justo-LiuNet) and two recent 2D CNNs (nnU-net and 2D-Justo-UNet-Simple) for cloud segmentation and classification is assessed. Evaluation criteria include precision and computational efficiency for in-orbit deployment. Experiments utilize NASA's EO-1 Hyperion data, with varying spectral channel numbers after Principal Component Analysis. Results indicate that 1D-Justo-LiuNet achieves the highest accuracy, outperforming 2D CNNs, while maintaining compactness with larger spectral channel sets, albeit with increased inference times. However, the performance of 1D CNN degrades with significant channel reduction. In this context, the 2D-Justo-UNet-Simple offers the best balance for in-orbit deployment, considering precision, memory, and time costs. While nnU-net is suitable for on-ground processing, deployment of lightweight 1D-Justo-LiuNet is recommended for high-precision applications. Alternatively, lightweight 2D-Justo-UNet-Simple is recommended for balanced costs between timing and precision in orbit.
- W. Jian, W. Yi, W. Wenlong, S. Lei, and S. Haiping, “Transfer-learning-based cloud detection for zhuhai-1 satellite hyperspectral imagery,” Frontiers in environmental science, vol. 10, 2022.
- K. Li, N. Ma, and L. Sun, “Cloud detection of multi-type satellite images based on spectral assimilation and deep learning,” International journal of remote sensing, vol. 44, no. 10, pp. 3106–3121, 2023.
- C. Zhao, X. Zhang, N. Kuang, H. Luo, S. Zhong, and J. Fan, “Boundary-aware bilateral fusion network for cloud detection,” IEEE transactions on geoscience and remote sensing, vol. 61, pp. 1–1, 2023.
- C. Luo, S. Feng, X. Li, Y. Ye, B. Zhang, Z. Chen, and Y. Quan, “Ecdnet: A bilateral lightweight cloud detection network for remote sensing images,” Pattern recognition, vol. 129, p. 108713, 2022.
- B. Grabowski, M. Ziaja, M. Kawulok, N. Longépé, B. L. Saux, and J. Nalepa, “Self-configuring nnu-nets detect clouds in satellite images,” arXiv.org, 2022.
- B. Grabowski, M. Ziaja, M. Kawulok, P. Bosowski, N. Longépé, B. L. Saux, and J. Nalepa, “Squeezing nnu-nets with knowledge distillation for on-board cloud detection,” arXiv.org, 2023.
- R. Pitonak, J. Mucha, L. Dobis, M. Javorka, and M. Marusin, “Cloudsatnet-1: Fpga-based hardware-accelerated quantized cnn for satellite on-board cloud coverage classification,” Remote sensing (Basel, Switzerland), vol. 14, no. 13, p. 3180, 2022.
- J. A. Justo, J. L. Garrett, M.-I. Georgescu, J. Gonzalez-Llorente, R. T. Ionescu, and T. A. Johansen, “Sea-land-cloud segmentation in satellite hyperspectral imagery by deep learning,” arXiv preprint arXiv:2310.16210, 2023.
- J. A. Justo, J. Garrett, D. D. Langer, M. B. Henriksen, R. T. Ionescu, and T. A. Johansen, “An open hyperspectral dataset with sea-land-cloud ground-truth from the HYPSO-1 satellite,” in IEEE WHISPERS, Athens, 2023, arXiv preprint arXiv:2308.13679.
- I. Numata, M. A. Cochrane, and L. S. Galvão, “Analyzing the impacts of frequency and severity of forest fire on the recovery of disturbed forest using landsat time series and eo-1 hyperion in the southern brazilian amazon,” Earth Interactions, vol. 15, no. 13, pp. 1–17, 2011.
- E. M. Middleton, S. G. Ungar, D. J. Mandl, L. Ong, S. W. Frye, P. E. Campbell, D. R. Landis, J. P. Young, and N. H. Pollack, “The earth observing one (eo-1) satellite mission: Over a decade in space,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 6, no. 2, pp. 243–256, 2013.
- M. Griggin, H.-h. Burke, D. Mandl, and J. Miller, “Cloud cover detection algorithm for eo-1 hyperion imagery,” in IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477), vol. 1. IEEE, 2003, pp. 86–89.
- F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein, “nnu-net: a self-configuring method for deep learning-based biomedical image segmentation,” Nature methods, vol. 18, no. 2, pp. 203–211, 2021.
- G. Giuffrida, L. Diana, F. de Gioia, G. Benelli, G. Meoni, M. Donati, and L. Fanucci, “Cloudscout: a deep neural network for on-board cloud detection on hyperspectral images,” Remote Sensing, vol. 12, no. 14, p. 2205, 2020.
- M. Wu, J. Wang, N. Yao, Z. Hou, and C. Wang, “Data quality evaluation of zy-1 02c satellite,” in Computer and Computing Technologies in Agriculture VI: 6th IFIP WG 5.14 International Conference, CCTA 2012, Zhangjiajie, China, October 19-21, 2012, Revised Selected Papers, Part II 6. Springer, 2013, pp. 187–195.