Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Digital Twin-assisted Reinforcement Learning for Resource-aware Microservice Offloading in Edge Computing (2403.08687v1)

Published 13 Mar 2024 in cs.NI and cs.LG

Abstract: Collaborative edge computing (CEC) has emerged as a promising paradigm, enabling edge nodes to collaborate and execute microservices from end devices. Microservice offloading, a fundamentally important problem, decides when and where microservices are executed upon the arrival of services. However, the dynamic nature of the real-world CEC environment often leads to inefficient microservice offloading strategies, resulting in underutilized resources and network congestion. To address this challenge, we formulate an online joint microservice offloading and bandwidth allocation problem, JMOBA, to minimize the average completion time of services. In this paper, we introduce a novel microservice offloading algorithm, DTDRLMO, which leverages deep reinforcement learning (DRL) and digital twin technology. Specifically, we employ digital twin techniques to predict and adapt to changing edge node loads and network conditions of CEC in real-time. Furthermore, this approach enables the generation of an efficient offloading plan, selecting the most suitable edge node for each microservice. Simulation results on real-world and synthetic datasets demonstrate that DTDRLMO outperforms heuristic and learning-based methods in average service completion time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. L. U. Khan, I. Yaqoob, N. H. Tran, S. A. Kazmi, T. N. Dang, and C. S. Hong, “Edge-computing-enabled smart cities: A comprehensive survey,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10200–10232, 2020.
  2. M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato, Q. Yang, X. S. Shen, and C. Miao, “A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges,” arXiv preprint arXiv:2203.05471, 2022.
  3. Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multi-hop multi-task partial computation offloading in collaborative edge computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1133–1145, 2020.
  4. M. Zhang, J. Cao, L. Yang, L. Zhang, Y. Sahni, and S. Jiang, “Ents: An edge-native task scheduling system for collaborative edge computing,” in 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC), pp. 149–161, IEEE, 2022.
  5. M. Zhang, J. Cao, Y. Sahni, Q. Chen, S. Jiang, and T. Wu, “Eaas: A service-oriented edge computing framework towards distributed intelligence,” in 2022 IEEE International Conference on Service-Oriented System Engineering (SOSE), pp. 165–175, IEEE, 2022.
  6. M. Tang and V. W. Wong, “Deep reinforcement learning for task offloading in mobile edge computing systems,” IEEE Transactions on Mobile Computing, 2020.
  7. J. Wang, J. Hu, G. Min, W. Zhan, A. Zomaya, and N. Georgalas, “Dependent task offloading for edge computing based on deep reinforcement learning,” IEEE Transactions on Computers, 2021.
  8. Y. Wang, W. Fang, Y. Ding, and N. Xiong, “Computation offloading optimization for UAV-assisted mobile edge computing: a deep deterministic policy gradient approach,” Wireless Networks, vol. 27, no. 4, pp. 2991–3006, 2021.
  9. T. X. Tran and D. Pompili, “Joint task offloading and resource allocation for multi-server mobile-edge computing networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2018.
  10. Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multihop offloading of multiple dag tasks in collaborative edge computing,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4893–4905, 2020.
  11. L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-twin-enabled 6g: Vision, architectural trends, and future directions,” IEEE Communications Magazine, vol. 60, no. 1, pp. 74–80, 2022.
  12. S. Mi, Y. Feng, H. Zheng, Y. Wang, Y. Gao, and J. Tan,“‘latex “Prediction maintenance integrated decision-making approach supported by digital twin-driven cooperative awareness and interconnection framework,” Journal of Manufacturing Systems, vol. 58, pp. 329–345, 2021.
  13. F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, “Digital twin-driven product design, manufacturing and service with big data,” The International Journal of Advanced Manufacturing Technology, vol. 94, pp. 3563–3576, 2018.
  14. T. Liu, L. Tang, W. Wang, Q. Chen, and X. Zeng, “Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1427–1444, 2021.
  15. J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li, “Dedas: Online task dispatching and scheduling with bandwidth constraint in edge computing,” in IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 2287–2295, IEEE, 2019.
  16. Z. Han, H. Tan, X.-Y. Li, S. H.-C. Jiang, Y. Li, and F. C. Lau, “Ondisc: Online latency-sensitive job dispatching and scheduling in heterogeneous edge-clouds,” IEEE/ACM Transactions on Networking, vol. 27, no. 6, pp. 2472–2485, 2019.
  17. L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks,” IEEE Transactions on Mobile Computing, vol. 19, no. 11, pp. 2581–2593, 2019.
  18. Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learning based offloading game in edge computing,” IEEE Transactions on Computers, vol. 69, no. 6, pp. 883–893, 2020.
  19. J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast adaptive task offloading in edge computing based on meta reinforcement learning,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 242–253, 2020.
  20. A. Samanta and J. Tang, “Dyme: Dynamic microservice scheduling in edge computing enabled IoT,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6164–6174, 2020.
  21. L. Gu, D. Zeng, J. Hu, B. Li, and H. Jin, “Layer aware microservice placement and request scheduling at the edge,” in IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pp. 1–9, IEEE, 2021.
  22. S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-aware microservice coordination in mobile edge computing: A reinforcement learning approach,” IEEE Transactions on Mobile Computing, vol. 20, no. 3, pp. 939–951, 2019.
  23. L. Chen, Y. Xu, Z. Lu, J. Wu, K. Gai, P. C. Hung, and M. Qiu, “IoT microservice deployment in edge-cloud hybrid environment using reinforcement learning,” IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12610–12622, 2020.
  24. Y. Dai, K. Zhang, S. Maharjan, and Y. Zhang, “Deep reinforcement learning for stochastic computation offloading in digital twin networks,” IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 4968–4977, 2020.
  25. J. Li, S. Guo, W. Liang, Q. Chen, Z. Xu, W. Xu, and A. Y. Zomaya, “Digital twin-assisted, sfc-enabled service provisioning in mobile edge computing,” IEEE Transactions on Mobile Computing, 2022.
  26. K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, “Energy-efficient joint offloading and wireless resource allocation strategy in multi-mec server systems,” in 2018 IEEE International Conference on Communications (ICC), pp. 1–6, IEEE, 2018.
  27. D. G. Cattrysse and L. N. Van Wassenhove, “A survey of algorithms for the generalized assignment problem,” European Journal of Operational Research, vol. 60, no. 3, pp. 260–272, 1992.
  28. T. Öncan, “A survey of the generalized assignment problem and its applications,” INFOR: Information Systems and Operational Research, vol. 45, no. 3, pp. 123–141, 2007.
  29. C. W. Cesar Ghali, “Random topology generator.” [Online]. Available: https://github.com/cesarghali/topology-generator/.
  30. “Alibaba cluster-trace-v2018.” [Online]. Available: https://github.com/alibaba/clusterdata/tree/master/cluster-trace-v2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com