Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Binary and Multiclass SVMs Trained on a Quantum Annealer (2403.08584v1)

Published 13 Mar 2024 in cs.ET, cs.LG, and quant-ph

Abstract: Support vector machines (SVMs) are widely used machine learning models (e.g., in remote sensing), with formulations for both classification and regression tasks. In the last years, with the advent of working quantum annealers, hybrid SVM models characterised by quantum training and classical execution have been introduced. These models have demonstrated comparable performance to their classical counterparts. However, they are limited in the training set size due to the restricted connectivity of the current quantum annealers. Hence, to take advantage of large datasets (like those related to Earth observation), a strategy is required. In the classical domain, local SVMs, namely, SVMs trained on the data samples selected by a k-nearest neighbors model, have already proven successful. Here, the local application of quantum-trained SVM models is proposed and empirically assessed. In particular, this approach allows overcoming the constraints on the training set size of the quantum-trained models while enhancing their performance. In practice, the FaLK-SVM method, designed for efficient local SVMs, has been combined with quantum-trained SVM models for binary and multiclass classification. In addition, for comparison, FaLK-SVM has been interfaced for the first time with a classical single-step multiclass SVM model (CS SVM). Concerning the empirical evaluation, D-Wave's quantum annealers and real-world datasets taken from the remote sensing domain have been employed. The results have shown the effectiveness and scalability of the proposed approach, but also its practical applicability in a real-world large-scale scenario.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. K. Crammer and Y. Singer, “On the Algorithmic Implementation of Multiclass Kernel-Based Vector Machines,” Journal of Machine Learning Research, vol. 2, p. 265–292, 3 2002.
  2. H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support Vector Regression Machines,” in Advances in Neural Information Processing Systems, M. Mozer, M. Jordan, and T. Petsche, Eds., vol. 9.   MIT Press, 1996. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
  3. D-Wave Systems Inc., “D-Wave Systems,” https://www.dwavesys.com, 2023, last access on 16 Jan 2024.
  4. D. Willsch, M. Willsch, H. De Raedt, and K. Michielsen, “Support vector machines on the D-Wave quantum annealer,” Computer Physics Communications, vol. 248, p. 107006, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S001046551930342X
  5. A. Delilbasic, B. Le Saux, M. Riedel, K. Michielsen, and G. Cavallaro, “A Single-Step Multiclass SVM Based on Quantum Annealing for Remote Sensing Data Classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, pp. 1–12, 2023.
  6. E. Pasetto, A. Delilbasic, G. Cavallaro, M. Willsch, F. Melgani, M. Riedel, and K. Michielsen, “Quantum Support Vector Regression for Biophysical Variable Estimation in Remote Sensing,” in IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 2022, pp. 4903–4906.
  7. G. Cavallaro, D. Willsch, M. Willsch, K. Michielsen, and M. Riedel, “Approaching Remote Sensing Image Classification with Ensembles of Support Vector Machines on the D-Wave Quantum Annealer,” in IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020, pp. 1973–1976.
  8. A. Delilbasic, G. Cavallaro, M. Willsch, F. Melgani, M. Riedel, and K. Michielsen, “Quantum Support Vector Machine Algorithms for Remote Sensing Data Classification,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp. 2608–2611.
  9. E. Pasetto, M. Riedel, F. Melgani, K. Michielsen, and G. Cavallaro, “Quantum SVR for Chlorophyll Concentration Estimation in Water With Remote Sensing,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  10. E. Fix and J. L. Hodges, “Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties,” USAF School of Aviation Medicine, Randolph Field, Tech. Rep. 4, 1951.
  11. E. Blanzieri and F. Melgani, “An Adaptive SVM Nearest Neighbor Classifier for Remotely Sensed Imagery,” in 2006 IEEE International Symposium on Geoscience and Remote Sensing, 2006, pp. 3931–3934.
  12. R. Hable, “Universal Consistency of Localized Versions of Regularized Kernel Methods,” Journal of Machine Learning Research, vol. 14, no. 5, pp. 153–186, 2013. [Online]. Available: http://jmlr.org/papers/v14/hable13a.html
  13. M. Meister and I. Steinwart, “Optimal Learning Rates for Localized SVMs,” Journal of Machine Learning Research, vol. 17, no. 194, pp. 1–44, 2016. [Online]. Available: http://jmlr.org/papers/v17/14-023.html
  14. N. Segata and E. Blanzieri, “Fast and Scalable Local Kernel Machines,” Journal of Machine Learning Research, vol. 11, no. 64, pp. 1883–1926, 2010. [Online]. Available: http://jmlr.org/papers/v11/segata10a.html
  15. A. Beygelzimer, S. Kakade, and J. Langford, “Cover Trees for Nearest Neighbor,” in Proceedings of the 23rd International Conference on Machine Learning, ser. ICML ’06.   New York, NY, USA: Association for Computing Machinery, 2006, p. 97–104. [Online]. Available: https://doi.org/10.1145/1143844.1143857
  16. T. Kadowaki and H. Nishimori, “Quantum annealing in the transverse ising model,” Phys. Rev. E, vol. 58, pp. 5355–5363, Nov 1998. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevE.58.5355
  17. P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver, “Perspectives of quantum annealing: methods and implementations,” Reports on Progress in Physics, vol. 83, no. 5, p. 054401, may 2020. [Online]. Available: https://dx.doi.org/10.1088/1361-6633/ab85b8
  18. M. Ayodele, “Penalty weights in qubo formulations: Permutation problems,” in Evolutionary Computation in Combinatorial Optimization, L. Pérez Cáceres and S. Verel, Eds.   Cham: Springer International Publishing, 2022, pp. 159–174.
  19. N. Segata, E. Pasolli, F. Melgani, and E. Blanzieri, “Local SVM approaches for fast and accurate classification of remote-sensing images,” International Journal of Remote Sensing, vol. 33, no. 19, pp. 6186–6201, 2012. [Online]. Available: https://doi.org/10.1080/01431161.2012.678947
  20. N. Segata, “FaLKM-lib v1.0: a Library for Fast Local Kernel Machines,” DISI, University of Trento, Italy, Tech. Rep. DISI-09-025, 2009, software available at http://disi.unitn.it/~segata/FaLKM-lib.
  21. D. Willsch, G. Cavallaro, and M. Willsch, “QA SVM implementation,” https://gitlab.jsc.fz-juelich.de/sdlrs/quantum-svm-algorithms-for-rs-data-classification/-/tree/master/experiments/QA_SVM?ref_type=heads, 2021, last access on 15 Dec 2023.
  22. A. Delilbasic, “QMSVM implementation,” https://gitlab.jsc.fz-juelich.de/sdlrs/qmsvm, 2023, last access on 15 Dec 2023.
  23. T. Joachims, “SVM-Multiclass: Multi-Class Support Vector Machine,” https://www.cs.cornell.edu/people/tj/svm_light/svm_multiclass.html, 2008, last access on 15 Dec 2023.
  24. C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  25. R. Roscher, M. Volpi, C. Mallet, L. Drees, and J. D. Wegner, “SEMCITY TOULOUSE: A BENCHMARK FOR BUILDING INSTANCE SEGMENTATION IN SATELLITE IMAGES,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. V-5-2020, pp. 109–116, 2020. [Online]. Available: https://isprs-annals.copernicus.org/articles/V-5-2020/109/2020/
  26. ISPRS, “2D Semantic Labeling Contest - Potsdam,” https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx, last access on 19 Dec 2023.
  27. Scikit-learn, “Balanced accuracy,” https://scikit-learn.org/stable/modules/generated/sklearn.metrics.balanced_accuracy_score.html, last access on 21 Dec 2023.
  28. ——, “F1 score,” https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html, last access on 21 Dec 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com