Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Search for low-mass resonances decaying into two jets and produced in association with a photon or a jet at $\sqrt{s}=13$ TeV with the ATLAS detector (2403.08547v2)

Published 13 Mar 2024 in hep-ex

Abstract: A search is performed for localized excesses in the low-mass dijet invariant mass distribution, targeting a hypothetical new particle decaying into two jets and produced in association with either a high transverse momentum photon or a jet. The search uses the full Run 2 data sample from LHC proton-proton collisions collected by the ATLAS experiment at a center-of-mass energy of 13 TeV during 2015-2018. Two variants of the search are presented for each type of initial-state radiation: one that makes no jet flavor requirements and one that requires both of the jets to have been identified as containing $b$-hadrons. No excess is observed relative to the Standard Model prediction, and the data are used to set upper limits on the production cross-section for a benchmark $Z'$ model and, separately, for generic, beyond the Standard Model scenarios which might produce a Gaussian-shaped contribution to dijet invariant mass distributions. The results extend the current constraints on dijet resonances to the mass range between 200 and 650 GeV.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (107)
  1. Particle Data Group and P.A. Zyla “Review of Particle Physics” In Prog. Theor. Exp. Phys. 2020.8, 2020, pp. 083C01 DOI: 10.1093/ptep/ptaa104
  2. Gianfranco Bertone, Dan Hooper and Joseph Silk “Particle dark matter: Evidence, candidates and constraints” In Phys. Rept. 405, 2005, pp. 279–390 DOI: 10.1016/j.physrep.2004.08.031
  3. Lars Bergström “Non-baryonic dark matter: observational evidence and detection methods” In Rept. Prog. Phys. 63, 2000, pp. 793 DOI: 10.1088/0034-4885/63/5/2r3
  4. “A Direct Empirical Proof of the Existence of Dark Matter” In Astrophys. J. Lett. 648, 2006, pp. L109–L113 DOI: 10.1086/508162
  5. Laurent Canetti, Marco Drewes and Mikhail Shaposhnikov “Matter and Antimatter in the Universe” In New J. Phys. 14, 2012, pp. 095012 DOI: 10.1088/1367-2630/14/9/095012
  6. Stephen P. Martin “A Supersymmetry primer” In Adv. Ser. Direct. High Energy Phys. 18, 1998, pp. 1–98 DOI: 10.1142/9789812839657_0001
  7. J.A. Aguilar-Saavedra “Identifying top partners at LHC” In JHEP 11, 2009, pp. 030 DOI: 10.1088/1126-6708/2009/11/030
  8. “Clockwork/linear dilaton: structure and phenomenology” In JHEP 06, 2018, pp. 009 DOI: 10.1007/JHEP06(2018)009
  9. Matthew J. Strassler and Kathryn M. Zurek “Echoes of a hidden valley at hadron colliders” In Phys. Lett. B 651, 2007, pp. 374–379 DOI: 10.1016/j.physletb.2007.06.055
  10. JiJi Fan, Matthew Reece and Joshua T. Ruderman “Stealth Supersymmetry” In JHEP 11, 2011, pp. 012 DOI: 10.1007/JHEP11(2011)012
  11. “Looking for an Invisible Higgs Signal at the LHC” In Phys. Lett. B 725, 2013, pp. 344–351 DOI: 10.1016/j.physletb.2013.07.042
  12. “How to Look for Supersymmetry under the LHC Lamppost” In Phys. Rev. Lett. 105, 2010, pp. 221801 DOI: 10.1103/PhysRevLett.105.221801
  13. “Anapole Dark Matter via Vector Boson Fusion Processes at the LHC” In Phys. Rev. D 100, 2019, pp. 016017 DOI: 10.1103/PhysRevD.100.016017
  14. Jalal Abdallah “Simplified Models for Dark Matter Searches at the LHC” In Phys. Dark Univ. 9-10, 2015, pp. 8–23 DOI: 10.1016/j.dark.2015.08.001
  15. “The Dawn of FIMP Dark Matter: A Review of Models and Constraints” In Int. J. Mod. Phys. A 32.27, 2017, pp. 1730023 DOI: 10.1142/S0217751X1730023X
  16. “WISPy Cold Dark Matter” In JCAP 06, 2012, pp. 013 DOI: 10.1088/1475-7516/2012/06/013
  17. “Implications of unitarity and gauge invariance for simplified dark matter models” In JHEP 02, 2016, pp. 016 DOI: 10.1007/JHEP02(2016)016
  18. Daniel Abercrombie “Dark Matter benchmark models for early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum” In Phys. Dark Univ. 27, 2020, pp. 100371 DOI: 10.1016/j.dark.2019.100371
  19. Felix Kahlhoefer “Review of LHC Dark Matter Searches” In Int. J. Mod. Phys. A 32.13, 2017, pp. 1730006 DOI: 10.1142/S0217751X1730006X
  20. “Constraints on Z’ models from LHC dijet searches and implications for dark matter” In JHEP 09, 2016, pp. 018 DOI: 10.1007/JHEP09(2016)018
  21. ATLAS Collaboration “Constraints on mediator-based dark matter and scalar dark energy models using s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collision data collected by the ATLAS detector” In JHEP 05, 2019, pp. 142 DOI: 10.1007/JHEP05(2019)142
  22. O. Buchmueller, Matthew J. Dolan and Christopher McCabe “Beyond Effective Field Theory for Dark Matter Searches at the LHC” In JHEP 01, 2014, pp. 025 DOI: 10.1007/JHEP01(2014)025
  23. ATLAS Collaboration “Dark matter summary plots for s𝑠sitalic_s-channel, 2HDM+a𝑎aitalic_a and Dark Higgs models”, ATL-PHYS-PUB-2023-018, 2023 URL: https://cds.cern.ch/record/2865335
  24. ATLAS Collaboration “Search for new physics in the dijet mass distribution using 1⁢fb−11superscriptfb11\,\text{fb}^{-1}1 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of p⁢p𝑝𝑝ppitalic_p italic_p collision data at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV collected by the ATLAS detector” In Phys. Lett. B 708, 2012, pp. 37 DOI: 10.1016/j.physletb.2012.01.035
  25. ATLAS Collaboration “Search for new phenomena in the dijet mass distribution using p⁢p𝑝𝑝ppitalic_p italic_p collision data at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector” In Phys. Rev. D 91, 2015, pp. 052007 DOI: 10.1103/PhysRevD.91.052007
  26. CMS Collaboration “Search for Dijet Resonances in 7⁢TeV7TeV7\,\text{TeV}7 TeV p⁢p𝑝𝑝ppitalic_p italic_p Collisions at CMS” In Phys. Rev. Lett. 105, 2010, pp. 211801 DOI: 10.1103/PhysRevLett.105.211801
  27. CMS Collaboration “Search for Resonances in the Dijet Mass Spectrum from 7⁢TeV7TeV7\,\text{TeV}7 TeV p⁢p𝑝𝑝ppitalic_p italic_p Collisions at CMS” In Phys. Lett. B 704, 2011, pp. 123 DOI: 10.1016/j.physletb.2011.09.015
  28. CMS Collaboration “Search for narrow resonances and quantum black holes in inclusive and b𝑏bitalic_b-tagged dijet mass spectra from p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=7⁢TeV𝑠7TeV\sqrt{s}=7\,\text{TeV}square-root start_ARG italic_s end_ARG = 7 TeV” In JHEP 01, 2013, pp. 013 DOI: 10.1007/JHEP01(2013)013
  29. CMS Collaboration “Search for narrow resonances using the dijet mass spectrum in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV” In Phys. Rev. D 87, 2013, pp. 114015 DOI: 10.1103/PhysRevD.87.114015
  30. CMS Collaboration “Search for resonances and quantum black holes using dijet mass spectra in proton–proton collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV” In Phys. Rev. D 91, 2015, pp. 052009 DOI: 10.1103/PhysRevD.91.052009
  31. CMS Collaboration “Search for Narrow Resonances in Dijet Final States at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV with the Novel CMS Technique of Data Scouting” In Phys. Rev. Lett. 117, 2016, pp. 031802 DOI: 10.1103/PhysRevLett.117.031802
  32. ATLAS Collaboration “Search for new phenomena in dijet mass and angular distributions from p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Lett. B 754, 2016, pp. 302 DOI: 10.1016/j.physletb.2016.01.032
  33. CMS Collaboration “Search for narrow resonances decaying to dijets in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Rev. Lett. 116, 2016, pp. 071801 DOI: 10.1103/PhysRevLett.116.071801
  34. CMS Collaboration “Search for dijet resonances in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV and constraints on dark matter and other models” In Phys. Lett. B 769, 2017, pp. 520 DOI: 10.1016/j.physletb.2017.02.012
  35. CMS Collaboration “Search for narrow and broad dijet resonances in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV and constraints on dark matter mediators and other new particles” In JHEP 08, 2018, pp. 130 DOI: 10.1007/JHEP08(2018)130
  36. CMS Collaboration “Search for Narrow Resonances in the b𝑏bitalic_b-Tagged Dijet Mass Spectrum in Proton–Proton Collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV” In Phys. Rev. Lett. 120, 2018, pp. 201801 DOI: 10.1103/PhysRevLett.120.201801
  37. CMS Collaboration “Search for high mass dijet resonances with a new background prediction method in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In JHEP 05, 2020, pp. 033 DOI: 10.1007/JHEP05(2020)033
  38. CMS Collaboration “Search for narrow resonances in the b𝑏bitalic_b-tagged dijet mass spectrum in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, 2023 arXiv:2205.01835 [hep-ex]
  39. ATLAS Collaboration “Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in p⁢p𝑝𝑝ppitalic_p italic_p Collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Rev. Lett. 121, 2018, pp. 081801 DOI: 10.1103/PhysRevLett.121.081801
  40. ATLAS Collaboration “Search for low-mass resonances decaying into two jets and produced in association with a photon using p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Lett. B 795, 2019, pp. 56 DOI: 10.1016/j.physletb.2019.03.067
  41. CMS Collaboration “Search for dijet resonances using events with three jets in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Lett. B 805, 2020, pp. 135448 DOI: 10.1016/j.physletb.2020.135448
  42. CMS Collaboration “Search for low-mass quark–antiquark resonances produced in association with a photon at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Rev. Lett. 123, 2019, pp. 231803 DOI: 10.1103/PhysRevLett.123.231803
  43. CMS Collaboration “Search for low mass vector resonances decaying into quark–antiquark pairs in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Rev. D 100, 2019, pp. 112007 DOI: 10.1103/PhysRevD.100.112007
  44. CMS Collaboration “Search for low mass vector resonances decaying into quark–antiquark pairs in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In JHEP 01, 2018, pp. 097 DOI: 10.1007/JHEP01(2018)097
  45. CMS Collaboration “Search for low mass vector resonances decaying to quark–antiquark pairs in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In Phys. Rev. Lett. 119, 2017, pp. 111802 DOI: 10.1103/PhysRevLett.119.111802
  46. ATLAS Collaboration “Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Phys. Lett. B 788, 2019, pp. 316 DOI: 10.1016/j.physletb.2018.09.062
  47. ATLAS Collaboration “The ATLAS Experiment at the CERN Large Hadron Collider” In JINST 3, 2008, pp. S08003 DOI: 10.1088/1748-0221/3/08/S08003
  48. ATLAS Collaboration “ATLAS Insertable B-Layer: Technical Design Report”, 2010 URL: https://cds.cern.ch/record/1291633
  49. B. Abbott “Production and integration of the ATLAS Insertable B-Layer” In JINST 13, 2018, pp. T05008 DOI: 10.1088/1748-0221/13/05/T05008
  50. ATLAS Collaboration “Performance of the ATLAS trigger system in 2015” In Eur. Phys. J. C 77, 2017, pp. 317 DOI: 10.1140/epjc/s10052-017-4852-3
  51. ATLAS Collaboration “The ATLAS Collaboration Software and Firmware”, ATL-SOFT-PUB-2021-001, 2021 URL: https://cds.cern.ch/record/2767187
  52. ATLAS Collaboration “Luminosity determination in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV using the ATLAS detector at the LHC” In Eur. Phys. J. C 83, 2023, pp. 982 DOI: 10.1140/epjc/s10052-023-11747-w
  53. G. Avoni “The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS” In JINST 13.07, 2018, pp. P07017 DOI: 10.1088/1748-0221/13/07/P07017
  54. ATLAS Collaboration “ATLAS data quality operations and performance for 2015–2018 data-taking” In JINST 15, 2020, pp. P04003 DOI: 10.1088/1748-0221/15/04/P04003
  55. Andreas Albert “Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for dark matter mediators in visible and invisible decay channels and calculations of the thermal relic density” In Phys. Dark Univ. 26, 2019, pp. 100377 DOI: 10.1016/j.dark.2019.100377
  56. “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations” In JHEP 07, 2014, pp. 079 DOI: 10.1007/JHEP07(2014)079
  57. NNPDF Collaboration and Richard D. Ball “Parton distributions with LHC data” In Nucl. Phys. B 867, 2013, pp. 244 DOI: 10.1016/j.nuclphysb.2012.10.003
  58. “An introduction to PYTHIA 8.2” In Comput. Phys. Commun. 191, 2015, pp. 159 DOI: 10.1016/j.cpc.2015.01.024
  59. Torbjorn Sjöstrand, Stephen Mrenna and Peter Skands “PYTHIA 6.4 physics and manual” In JHEP 05, 2006, pp. 026 DOI: 10.1088/1126-6708/2006/05/026
  60. ATLAS Collaboration “ATLAS Pythia 8 tunes to 7⁢TeV7TeV7\leavevmode\nobreak\ \text{TeV}7 TeV data”, ATL-PHYS-PUB-2014-021, 2014 URL: https://cds.cern.ch/record/1966419
  61. D.J. Lange “The EvtGen particle decay simulation package” In Proceedings, 7th International Conference on B physics at hadron machines (BEAUTY 2000) 462, 2001, pp. 152 DOI: 10.1016/S0168-9002(01)00089-4
  62. Enrico Bothmann “Event generation with Sherpa 2.2” In SciPost Phys. 7.3, 2019, pp. 034 DOI: 10.21468/SciPostPhys.7.3.034
  63. “Comix, a new matrix element generator” In JHEP 12, 2008, pp. 039 DOI: 10.1088/1126-6708/2008/12/039
  64. “OpenLoops 2” In Eur. Phys. J. C 79.10, 2019, pp. 866 DOI: 10.1140/epjc/s10052-019-7306-2
  65. Fabio Cascioli, Philipp Maierhöfer and Stefano Pozzorini “Scattering Amplitudes with Open Loops” In Phys. Rev. Lett. 108, 2012, pp. 111601 DOI: 10.1103/PhysRevLett.108.111601
  66. Ansgar Denner, Stefan Dittmaier and Lars Hofer “Collier: A fortran-based complex one-loop library in extended regularizations” In Comput. Phys. Commun. 212, 2017, pp. 220–238 DOI: 10.1016/j.cpc.2016.10.013
  67. “A parton shower algorithm based on Catani–Seymour dipole factorisation” In JHEP 03, 2008, pp. 038 DOI: 10.1088/1126-6708/2008/03/038
  68. “A critical appraisal of NLO+PS matching methods” In JHEP 09, 2012, pp. 049 DOI: 10.1007/JHEP09(2012)049
  69. “QCD matrix elements + parton showers. The NLO case” In JHEP 04, 2013, pp. 027 DOI: 10.1007/JHEP04(2013)027
  70. “QCD Matrix Elements + Parton Showers” In JHEP 11, 2001, pp. 063 DOI: 10.1088/1126-6708/2001/11/063
  71. “QCD matrix elements and truncated showers” In JHEP 05, 2009, pp. 053 DOI: 10.1088/1126-6708/2009/05/053
  72. Frank Siegert “A practical guide to event generation for prompt photon production with Sherpa” In J. Phys. G 44.4, 2017, pp. 044007 DOI: 10.1088/1361-6471/aa5f29
  73. Stefano Frixione “Isolated photons in perturbative QCD” In Phys. Lett. B 429, 1998, pp. 369–374 DOI: 10.1016/S0370-2693(98)00454-7
  74. NNPDF Collaboration and Richard D. Ball “Parton distributions for the LHC run II” In JHEP 04, 2015, pp. 040 DOI: 10.1007/JHEP04(2015)040
  75. ATLAS Collaboration “The ATLAS Simulation Infrastructure” In Eur. Phys. J. C 70, 2010, pp. 823 DOI: 10.1140/epjc/s10052-010-1429-9
  76. S. Agostinelli “Geant4 – a simulation toolkit” In Nucl. Instrum. Meth. A 506, 2003, pp. 250 DOI: 10.1016/S0168-9002(03)01368-8
  77. ATLAS Collaboration “The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model”, ATL-PHYS-PUB-2016-017, 2016 URL: https://cds.cern.ch/record/2206965
  78. ATLAS Collaboration “Vertex Reconstruction Performance of the ATLAS Detector at s=13⁢TeV𝑠13TeV\sqrt{s}=13\leavevmode\nobreak\ \text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, ATL-PHYS-PUB-2015-026, 2015 URL: https://cds.cern.ch/record/2037717
  79. ATLAS Collaboration “Jet reconstruction and performance using particle flow with the ATLAS Detector” In Eur. Phys. J. C 77, 2017, pp. 466 DOI: 10.1140/epjc/s10052-017-5031-2
  80. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm” In JHEP 04, 2008, pp. 063 DOI: 10.1088/1126-6708/2008/04/063
  81. Matteo Cacciari, Gavin P. Salam and Gregory Soyez “FastJet user manual” In Eur. Phys. J. C 72, 2012, pp. 1896 DOI: 10.1140/epjc/s10052-012-1896-2
  82. ATLAS Collaboration “Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1” In Eur. Phys. J. C 77, 2017, pp. 490 DOI: 10.1140/epjc/s10052-017-5004-5
  83. ATLAS Collaboration “Jet energy scale and resolution measured in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In Eur. Phys. J. C 81, 2021, pp. 689 DOI: 10.1140/epjc/s10052-021-09402-3
  84. ATLAS Collaboration “Performance of pile-up mitigation techniques for jets in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=8⁢TeV𝑠8TeV\sqrt{s}=8\,\text{TeV}square-root start_ARG italic_s end_ARG = 8 TeV using the ATLAS detector” In Eur. Phys. J. C 76, 2016, pp. 581 DOI: 10.1140/epjc/s10052-016-4395-z
  85. ATLAS Collaboration “Selection of jets produced in 13⁢TeV13TeV13\leavevmode\nobreak\ \text{TeV}13 TeV proton–proton collisions with the ATLAS detector”, ATLAS-CONF-2015-029, 2015 URL: https://cds.cern.ch/record/2037702
  86. ATLAS Collaboration “ATLAS flavour-tagging algorithms for the LHC Run 2 p⁢p𝑝𝑝ppitalic_p italic_p collision dataset” In Eur. Phys. J. C 83, 2023, pp. 681 DOI: 10.1140/epjc/s10052-023-11699-1
  87. ATLAS Collaboration “Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data” In JINST 14, 2019, pp. P12006 DOI: 10.1088/1748-0221/14/12/P12006
  88. ATLAS Collaboration “Performance of electron and photon triggers in ATLAS during LHC Run 2” In Eur. Phys. J. C 80, 2020, pp. 47 DOI: 10.1140/epjc/s10052-019-7500-2
  89. ATLAS Collaboration “The performance of the jet trigger for the ATLAS detector during 2011 data taking” In Eur. Phys. J. C 76, 2016, pp. 526 DOI: 10.1140/epjc/s10052-016-4325-0
  90. Hans Dembinski, Michael Schmelling and Roland Waldi “Application of the iterated weighted least-squares fit to counting experiments” In Nucl. Instrum. Meth. A 940, 2019, pp. 135–141 DOI: https://doi.org/10.1016/j.nima.2019.05.086
  91. “Interpolation between multi-dimensional histograms using a new non-linear moment morphing method” In Nucl. Instrum. Meth. A 771, 2015, pp. 39–48 DOI: 10.1016/j.nima.2014.10.033
  92. CDF Collaboration “Search for new particles decaying into dijets in proton-antiproton collisions at s=1.96𝑠1.96\sqrt{s}=1.96square-root start_ARG italic_s end_ARG = 1.96 TeV” In Phys. Rev. D 79, 2009, pp. 112002 DOI: 10.1103/PhysRevD.79.112002
  93. ATLAS Collaboration “Search for New Particles in Two-Jet Final States in 7⁢TeV7TeV7\,\text{TeV}7 TeV Proton–Proton Collisions with the ATLAS Detector at the LHC” In Phys. Rev. Lett. 105, 2010, pp. 161801 DOI: 10.1103/PhysRevLett.105.161801
  94. ATLAS Collaboration “Search for new phenomena in multi-body invariant masses in events with at least one isolated lepton and two jets using s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV proton–proton collision data collected by the ATLAS detector” In JHEP 07, 2023, pp. 202 DOI: 10.1007/JHEP07(2023)202
  95. ATLAS Collaboration “Search for new resonances in mass distributions of jet pairs using 139⁢fb−1139superscriptfb1139\,\text{fb}^{-1}139 fb start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector” In JHEP 03, 2020, pp. 145 DOI: 10.1007/JHEP03(2020)145
  96. CMS Collaboration “Search for resonant and nonresonant production of pairs of dijet resonances in proton–proton collisions at s=13⁢TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV” In JHEP 07, 2023, pp. 161 DOI: 10.1007/JHEP07(2023)161
  97. ATLAS Collaboration “Pursuit of paired dijet resonances in the Run 2 dataset with ATLAS”, 2023 arXiv:2307.14944 [hep-ex]
  98. ATLAS Collaboration “Simulation-based extrapolation of b𝑏bitalic_b-tagging calibrations towards high transverse momenta in the ATLAS experiment”, ATL-PHYS-PUB-2021-003, 2021 URL: https://cds.cern.ch/record/2753444
  99. CDF Collaboration “Global Search for New Physics with 2.0 fb−11{}^{-1}start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT at CDF” In Phys. Rev. D 79, 2009, pp. 011101 DOI: 10.1103/PhysRevD.79.011101
  100. Georgios Choudalakis “On hypothesis testing, trials factor, hypertests and the BumpHunter”, 2011 arXiv:1101.0390 [physics.data-an]
  101. “pyBumpHunter: A model independent bump hunting tool in Python for High Energy Physics analyses” In SciPost Phys. Codebases 15, 2023 DOI: 10.21468/SciPostPhysCodeb.15
  102. “pyBumpHunter”, https://github.com/scikit-hep/pyBumpHunter
  103. “Asymptotic formulae for likelihood-based tests of new physics” In Eur. Phys. J. C 71, 2011, pp. 1554 DOI: 10.1140/epjc/s10052-011-1554-0
  104. Alexander L. Read “Presentation of search results: the C⁢LS𝐶subscript𝐿𝑆CL_{S}italic_C italic_L start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT technique” In J. Phys. G 28, 2002, pp. 2693 DOI: 10.1088/0954-3899/28/10/313
  105. ATLAS Collaboration “ATLAS Computing Acknowledgements”, ATL-SOFT-PUB-2023-001, 2023 URL: https://cds.cern.ch/record/2869272
  106. ATLAS Collaboration, 2012 URL: https://cds.cern.ch/record/1451888
  107. In Eur. Phys. J. C 73, 2013, pp. 2501 DOI: 10.1140/epjc/s10052-013-2501-z

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com